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ABSTRACT

The mechanical interactions between reinforcement and mstrix in a
composite under load have been described by stress distridbution
equations in the fibers and in the matrix. Although special attemtion
has been given to stresses resulting from polymerisation and temper-
ature shrinkage, the solutions obtained can be easily adapted for uee
vith ti's boundary conditions of external locads. Several cases vwere
considered:

(1) a cylindrical filement of finite length embedded
in a resin cylinder;

(2) e cylindrical filament of infinite length embedded
in a resin cylinder; and

(3) e matrix supporting a central fiber surrounded by
six symmetrically speced fibers, each in turn
surrounded by eix others.
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constants

diameter of resin
radius of resin cylinder before stress develops

constants
constants defined in equations (182) through (217)
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This program was initiated to provide further understanding of the
mechanical interaction between reinforcements and the matrix in a
fibrous, composite material. The mathematical fundamentals initially
established were a set of solutions of partial differential equation
describing the distortions in both the reinforcement and matrix. The
solutions were kept in general form so that they could be used in
establishing those internal stress distributions resulting from
polymerization and temperature shrinkages as well as those resulting
from loads imposed at the outer surface.

Two :ases are considered: (1) a cylindrical filament of finite length
centrally embedded in a matrix cylinder, and (2) a matrix which supports
a central fiber that is surrounded by six symmetrically spaced fibers.

Undulating stresses apparently result in both cases. Complete axial
symmetry was assumed in the monofilament case, while for the seven-
fiber model, the stress pattern is repeating six times around the
central fiber.

The belief is that the first case has been solved rigorously in this
work without any simplifying approximations or assumptions. For the
latter case, certain potential functions representing the component of
the curl of the displacement vector and one function of volumetric
compressibility have been set to zeroc; to date, however, there is no
rigorous theoretical support for this assumption.



The strength of composites appears to be well below that which might
be achieved, vhen the available strength of the reinforcing filaments
is considered.®* Any attempt to develop reinforced composites with
strength-to-weight-ratios higher than those presently attainable must
be based on iorc complete information concerning the mechanical
interaction between the reinforcement and matrix in a composite. The
subsequent text summarizes the mathematical development accomplished
under a program vhose goal was to more clearly define this interaction.

The initial consideration is that of distortions in two homogeneous
materials, one embedded in the other. A consideration of equilibrium,
a strese-strain relation, and a strain-displacement relation will lead
to differential equations for the stresses, strains, and displacements
on and vwithin a solid body. As a specific case, & cylindrical system
is considered in some detail. This basic development is then applied
to two cases.

Cgse 1 - A cylindrical filament centrally embedded in & matrix cylinder
is stuvdied. Axial symmetry is assumed. The mathematically rigorous
solution of the three differentisl equations of displacement is
derived. The proper boundary conditions applied to the solutions
tesults in the equation for strain and stress distributions in the
ca.posite. Special attention is given to the boundary conditions on
the interface between reinforcement and matrix, and to the case vhere
external forces are spplied. In this msnner the residual stress
distribution in the composite is obtained. A specific numerical
example of an infinite fiber surrounded by resin is given.

E Narmco Research & Development, Potential of Filament-W
Final Report, Contract NOw 61-0623-c/FBM), San Diego, Calif., Mar 1
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Case 2 - A matrix supporting a central fiber that is surrounded by six
symmstrically spaced fibers is treated. The mathematical steps are
similar to ttore followed in the first case, but are much more
complicated ss there is only hexagonal symmetry around the fibers. This
and other geometric limitations are assumed as boundary conditions. The
boundary conditions on the interface between the reinforcement and the
composite are the sams as those in the singlc-fiber case. The basic
equilibrium equations (expressed in terms of displacements) are con-
sidered simultaneously, and general solutions for the displacements or
distortions in the composite are obtained.



The component materials of the composite are assumed to be under internal
and external stresses. Included are polymeriszation shrinkages and
temperature expansion or contraction phenomena. The total strain
resulting from such stresses is represented by the strain touoor.*

In cylindrical coordinates, the elements of the strain tensor are
obtained.

.14
D), * 'a'rl (1)
.14
Dy; %[‘1"&’51] (2)
.1 4
Dyy * a':'z 3
ke
”12'::3&*3: 'r‘ 10
[a8, . 28
- &
D3 * 2 a_-z“'fu (3
) - % 6
Dyy = 2|3 * (®

* Bquation (A71) (A72) in the Appendix to this report.



*
Equations (1) through (5) introduced into the stress tensor

kk +
old 1—!—; bij-rbu ‘ﬁvb '11'_.'\2'; T"’B])} )

result in stress distribution in radial, tangential, and axial directionm,

4s symbolized in the following au ’ °22 ’
radial, tangential, and axial direction, and O19 » 013 ’ 023 ,» the
shear stresses in tangential, axial, and radial direction.

033 direct stresses in

(Mote: All of the stresses are written with subscripts, which is custom-
ary for the theory of elasticity. Superscripts I and 11 indicate the
stress in the reiaforcements and resin respectively.)

To obtain the displacement l} , 8, ‘; and '{I ’ ‘:x ’ ‘;I

o
the differential equations of displucements wmust be solved. Restated,
the partial differential equations are

In the radial direction:
X oXs X a2

2
1 =-2v ar 2 2:2 GJ 2 3'2 2(1 - 2v) r ar @

a%g g og
- - L J+ = l 4 - l ‘ -
2(1 - 2v) aras 2(1 - 2v) rz o 1-2v r {or r "1

o

9 d
TL-:’ZC (aax-ts% 1—:—2 (;1 cos® - g, ﬁ.w’ =0 (8)

% Bquation (63) in the Appendix
w& Eruations (73) in the Appendix



In the tangential direction:

2 2 2 2
1%, -y 1 2%, 12%, 1 125,
2 arz 1 - 2v t,2 wz 2 332 2(1 - 2v) r Jr W

1:‘..‘3_+1.(1:_-__4~.x°_“1+2z.1 ;’-
2(1 = 2v) r 33 2r {r 1-2v @ or r 2] -

T‘% -}- ‘u %éd' g-%) +‘31 sin® + g, cooo) 1—;'3 » 0 (9

In the axial direction:

2 2 2 2
i 2—‘.14-.1— a_;}.-}_l_'.l. 2—‘1*21!52\)) :%l+
2 atz 2!2 3¢2 1 -2 382 ( r s
2
1 1Y% 1%, 0%

2(1 - 2v) r 39 3z + 2(1 - 2v) r 23z 2r or

i ("g'f ?; tgy 42 -0 (0

It can be seen that the three differential equations are coupled partial
differential equations which, by introduction of adequate mathematical
potential, can be separated. Before this is considered, however, an
extensive study of the boundary conditions is presented to provide

insight to the problem and facilitate its solutions. The first is a
finite fiber in a matrix cylinder, and the second condition consists of

& matrix and & cent-al fiber surrounded by six symmetrically placed fibers.



Consider a fiber of diameter Zao and length Z{b embedded in a matrix

cylinder of outer diameter 2bo and length Zlb . The index zero refers
to dimensions before any stress has developed.

Figure 1
The system of the partial differential equations (8) through (10)
describes the distortion in both materials. It {is

1

§,(rs 2) (11)
the distortion vector in the fiber and

1

Glx(r. t) (12)

the distortion vector in the matrix. The material constants E , Vv,

B, a , wvhich have superscripts I or 1I refer to the reinforcement or
matrix respectively.



The fundamental equations of the theory of elasticity are valid and
the results obtained in the Appendix can be utilized. The boundary
conditions are implemented by the fact that both ends are free
from stresses.

If there are no external forces, then

11 &
aij(bll ; z)nj 0 13)

is considered a set of boundary conditions. In equation (13),

11
9%z ° *

is the stress tensor (equation 7) on the surface of the matrix in the
points

" - by = b f1-8%) “)

and nj 1s the unit vecto:s normal to the surface element in the
point bI LR

The length bll - b°(1 - BII), the outer radius shortened by the
shrinkage of the matrix. But since nj
tion, it {is, in the assumed cylindrical coordinate system,

is always in 1 (or r) direc-

n, = e = § (14)

so that equation (13) becomes

11 1 . Sl m



or, more specifically,

11 .

oy) (b z) 0 (16)
11 .

o [Prr+8) = © an

o3y (Pyg » z, « 0 18)

By using the ~quation for the stress tensor, these boundary conditions
result in

11

I{ (bII . :’ + ;—:x;:if gk ‘bll . :' = 0 (19)
o (b1 - ) =0 (20)
l{ ‘btl N s' = 0 (21)

Using equations (1) through (6), equations (19) through (21) become

2‘—‘-11_4.4._.?__ -L. .ajﬂ ‘bll’t"”

ZV

) 84

) b,y ;» &

>s = 0 (22)




11
a% (:f-) [bry ) = o (23)

2gil 3g11
—a-g- (bn), : + —ai-‘bu : z) =0 (24)

Equations (22) through (24) can also be used for the infinite fiber.

The boundary conditions for the fiber at the end of the specimen are

O{J(r,tx)nj = 0

for 0 £ r < a (25)
a:J (r .-LI) nj « 0
and, for the matrix, are
ag T, lu}uj - 0 |
}torasrsb (26)
c:} r, Lu aJ - 0 I

In equations (23) and (26), consideration must be given to the fact that
the length { 1in both cases is subjccted to shrinkage, so that

o = ¢ -1
and
u’

Y1 = HLit-»

10




Here, the normal vector is in 2z direction (axial)

Equations (25) and (26) result in rhe conditions for the reinforcement:

0;3 r,tx - .°§3 r.-l.I = 0 (27)
ol r - gl r, - = 0 (28)
2|t Y 2t 4
ol [t e« +ol [z, - - 0 (29)
nitf' 4 nir: -4

and results in the following conditions for the matrix:

I1
°33"‘n--o§;:.-¢,n’-o (30)
°§§"-‘u"°§§"-"u"° (31)
oi{t.tll'-ogr.-l.n,-o (32)

Applying equation (7) again yields

Dl‘rt +—Lx—oxr: - 0 33
3 (7 4y e, w (70 24 (33)
n§2 (r vt = 0 (34)
oo o

11




and with equations (1) through (6),

ag: R ¢ 3 rSI
ey T‘TIQ‘T‘“ e B

&
£
—

£l
<

ag! a8l

ol O Bl L I
Y b 11 3 rgit
e - 25l S

L (' : t‘tzi}"

12

(=]

(36)

(37)

(38)

(39)

(40)

(41)

(42)




a‘II
-sf- ‘r ’ t{ll’ = 0

gII agu

.
T e otty) * e [rtyy) -0

(43)

(44)

Equations (33) through (44) are twelve boundary conditions relating only
to the finite-length fiber. These conditions must be sat_sfied by the
solutions of the differential equations. To define the problem for the

infinite fiber, the length { must be assumed to approach infinite,

wvhich is a separate mathematical problem.
For reasons of symmetry, the following conditions are valid:

1 1
;{I ., z) = g}I (r » © z)

G;I (r ,2) == le (r , - )

(45)

Since im the plane £ = { , equation (45) must be satisfied, ;1

can be developed and represented by Taylor's series.

1,11 . Z 2 at 1,1
He.n - Lo et eLo

..y Lt £ oax
tnz:o n: as“ ;1 cath

13



or

n

= n
Y bt o) T L0 -0 e
s 0 fa} ] i

From equation (46), it follow. that for { = 1 , all uneven partial
derivatives with respect to z at the location (r , 0) must vanish
identically. All even partial derivatives with respect to z vanish
for { = 2 and 3, so that

2ntl *, TR
.Y ]
and (47)
2® 1,11
| Bl (tr ,0) = 0
g2 23

The solutions of equations (8) through (10) must satisfy equation (47).

A third set of conditions can be derived from t. . facc that on the
fiber matrix interface, two neighboring particles of the two materials
sust remain together during the distortion displacements. First,
assume that both the fiber and the matrix are made of an homogeneous
material. Secondly, assume that the shrinkage of a cubic particle of
the length . {is 1 - BI and 1 - BII respectively. Third, assume
that BII > al . Then the fiber will also be compressed in all direc-
tions. As a result, stresses will develop in both materials. Before
the stresses develop, the common dimensions are a b° , and lb .
If the fiber were not present, the inner radius of the resin would

shrink freely until it would assume the dimension

REEPE (48)

14



Also, the outer radius of the resin reduces
oI - b1 - 6™) 49)

and the length becomes
11 ) 94
& e g 1) (50)

A particle in the matrix with the original coordinates

To (1 N BII, v B 0 % (l ) ’II)

Similar results are obtained for the coordinates of the reinforcement:

al . . il R al’ (51)

I

- ¢ (1 - 6% (52)
A glass cylinder in a hollow resin cylinder is depicted in Figure 2 in
order to illustrate the distortions caused by the difference in shrink-
age and thermal expansion of the two materials. Each material by itself
would shrink to the cylinder size indicated by the thin lines, but is
restricted in this case ly the presence of the other material. Since
material particles must stay in contact in the interface, the point

P_  (in the state without stress) settle at the common location P

o
instead of moving to the locations P (for the reinforcement) and

I
'II (for the matrix).

15
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The total distortion ’o ; can be described in tw~ ways:

—— . + -’—.
Po 4 Po ’I 1 ? (53)
and
— —— G ——
Po P = Po PII + ’II 4 (54)

——
PI P 4is the distortion of the reinforcement cylinder as in the points

rl(.o(x-ﬂ : :(1-.1))

Therefore,
¥ - ;{‘.op-a‘] ,.(1-5‘]) (s5)

Similarly, distortion for the matrix is

S 3 . ol . all 11
O ci‘-o(x ') L af1-8 )) (36)
The vectors ’o ;I and ’o ’II are displacements of Po a, 8 in
the interface of I and 11, so that
——— I 1 I
,o 'l . V1 - -e, lol - ey sh (57)
and
e - i . . ) & S ) § ¢
Lt Y *q %P 3 5P (38)
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Using equations (53) and (54), and equations (55) through (58), the
follow‘ng relation exists:

—_—D P RS
PP-P, P - ’o'll.’oil

or

H U T | By (TR IR
SRRV [ o IS LLIRIFLL) BT

The subsequent boundary condition equations follow from equation (59):

S:[ao(l -8 . ot - 91‘ - G{I[ao(l -8 . e - au)]

= .o( al . en) (60)

q 3
Gg[aol-.l . zl-lx) - 85 |a 1-o)  h-al)l e 0 (o)

- ofs? - 8" o2

Using the transformdtions

el . :ll - 8% (63)

18



zI = z(l - BI) (64)
in material I, and the transformations

= i - pll (65)

‘II =l i h . BII (66)

in material II, equations (60) and (* then become

!
g} g 1) - ;{x PR ¢ IS © SR 67)
9; J L) gi’ JIou) . (68)

By taking into account a strip PQ and its =2longation or contraction
during the process, and considering Figures 1 and 2(c).

R R AL =
But it is

" o- - ;f(ao(l -8} . o - at))

and

A YRS I PRSI

19




1
R PPN I3 TR TR P e
Writing K - 1 , then equation (70) becomes

2% 1 1
co A B ) o

and for the matrix becomes

11 11 EE:: 11 11
it Az(x -8 ){eu + —a (.0(1 -8 ) . z(l -8 (72)

Since

1 I

it follows that

1-51’ ( (1-5),:(1-3))-
e ) oo

Equation (74) could also have been vbtained by differentiation from
equations (60) and (61); this method can be used to verify the procedure.

20



On the intcrface of fiber and resin, there are the normal stresses in

both materials equal and opposite

p; = oij(ao(l . el) , z(l . sl)) by (75)
p? - - og(ao(l - an) , z‘l - an))blj (76)

and
Py = - by an

Consequently, the stress boundary condition at the interface is

I 1 . 1 11 iy .
°11(‘o(1 -8 ) ,ef1 -8 ))- cu(ao(l -8 ) ,efL-s ' 0 (78)
Expressed in coordinates, equation (78) is

P

: \ :

ol .0(1 - 8%}, =1 - 8t} - oﬁ[.o(l - o1}, :(1 -l - o (79)
b -

- -

I il 1 11) 1
o1,]3, ,zl-ad-oua 1-88) , sl -] - o (80)

, y 1l W
‘.1-51.41-3‘) i, 1 - p*), <f1 - s¥¥}} = o (81)

“ b

The six boundary conditions on the common surface of the fiber and resin
are given in equations (60) through (62) and equations (79) through (81).

21



Sclution of the Diffexencial Equations for & Single Fiber in the Matrix

After having established all boundary conditions, the differential
equations (9) through (11) are treated. The differential equations
for one single fiber are brought into the forms

2 2
2 2 3¢, 3°§ 14

o8 or r ot or r
2 2
. 3 4 .14 d°¢
arz +48 - " ‘z + 3'2 0 (83)
2 .2 2%, % a8
os or ol os or E-OF

2 2
37¢ "¢ .14
l - -
v ahdw ahd-+ —abbe LULR R (#5)

vhere ¢ must be a solution of

2

2
3¢ . 3¢
a.2 atz r dr rZ |

According to Bernolli, this equation can be solved by setting

¢, = Ri(x)2Z,(s)



and the following ordinary differential equations obtained:

2
d2
ds

a a
2
“—z‘*i‘z:‘*('* ';‘z')‘x - o

vith the solutions

2
3%¢, 3¢ . 4
1% )
v o ah -+ bl LR ACENC)

Using a procedure similar to that used for equation (86), the

is set

§, = R() 2(a)

23

(87)

(88)

(89)

(90)

(91)

’ sllowing

(92)



and obtained (Ref. 2)

142, 1fda, 1.1, o LE Hw
A d'z R tz r dr r2 R(r) 2'sz)

Two separable cases exist when

2,(z2) = ai(e)

and wvhen

R, (xr) = BR(r)

Both canes ave possible solutions and the sum of both is another
solution. For equation (94), it follows from equation (93)

2
2
1 ﬂn}ugn-.xz...“l(,,} .

r dr
r 1

from vhich it follows that

2

dL4422 = 0
2tk

ds

24

(93)

(94)

(95)

(9%)

(97)

(98)



Because of (87), (9>, and (97), the following exists:

kl = A (99)
and equation (98) is
14R,.[.,2_1 .
i;% bS[0 rz) R a R, (r) (100)

ll(r) in equation (100) is a linear combination of the solutions,
defined by equation (90) as Bessel functions. The total solution of
differential equation (100) is:

R(r) = A, J (1hr) + B, uf"(m) +€r 3_(1Ar) + Dyr H_(13r) (101)

|

Por the first case, or equation (94), the general solutions are

r Jo(nr) +

5 - [‘1 J () + B, uf"(m) +c,

Dll‘ Ho(ikr)] [c“" + s c.“"] (102)

For the second case, it follows from equations (95) and (93) that

2 Z,(z)
l - - 2
2 ::é . Jz_ k, (103)
2,14, (.2.1), .
o2 T (“z :2) R =0 (104)
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Because of equation (95), the equations (104) and (88) are identical, thus

k, =11} (105)
and equation (103) becomes
4% . .2 iz -1hs
2+xz-o,e + 8 e (106)

ds

Two independent solutions of equation (106) are already found in
equation (89). The two other solutions can be found by setting

Az

2(z) = vy u(s) i 4y v(z) a (107)

Bquation (106) with equation (107) becomes
v(“11. +2 ulu - xzu).ﬁx: * b(vn -2 vlu . x2")‘-1)‘3

‘m +8 ‘-iu (108)

E qa
From equation (108), the following is obtained:

uu + 2 ulik - qu E % (109)

vu - 2 vll). - sz & % (110) . .

Since o and B are complex, it follows that for the imaginary part
P &l 1
u TN imag ( Y ) c2 Y
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v1 . --zlx' 1-.3(%) - dz%

Consequently,
C
u(z) = -Yz. (111)
d
v(z) = -}: (112)

The real part gives solutions already known, and equation (107)

becomes

I(s) = C,z JSiks d,z o 128 (113)

The complete solution of the ordinary differential equation (106) is

2s) = a, LS N b, oirs c,* i, 4t o 1re (114)

and therefore the total solution for the second case

!'1 - Az Jl(nr) + '2 u{‘)(m)) [.iks + a, c'u' +

b, oA, c,® .“"] (115)

The total solution including both cases is

5, = §,+ % (116)
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or
‘1‘r.') L] [xz Jl(1Xr) +‘2 “{1)(1xr)][.ik. + ‘2 .'ikl] s +
[Kl 3,00 + 8, 1 ) + e 3 () +
Br ﬂgl)(ur)] . P“" +3, c'“"] (117)

Using the same procedure for the 1istortion vector component in axial
direction, differential equation (84), a solution analog to equation (117)
is obtaiuned:

‘3!:.') - [‘2 Jo(txr) + ;2 ugl)(ixr)] [.1:. + :2 .‘i{‘] s +
[‘1 Jo(dr) + :1 Hl(l) (i) + 81’ Jl(t{r) +

B uf“ (1{:)] [.‘x‘ +a .-1!:] (118)

The general solution of equation (83) is similarly obtained; this s
a partial differential equation which results in a Bessel equation of
first order and a differentidl equation of exponential functions

2 r dr

ﬁum(uz 42.) .
dr r
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and

2
L%-pzz « 0
ds

The solution of equation (83) is the sum of the particular solutions;

i.e.,

6(r) - (A £+ 5)(1 s3]+ (xz 3, %) +

l H(l)(lxr)” u' +a

; e-ix') (119)

The solutions for the distortion vector components in the reinforcement
(superscript 1) and the matrix (superscript I1) are as follows:

In Radial Direction in the Reinforcement:

gi(r.t) - Z 3, (u‘: (A{ cos A1z + A: oin Xl:) g +

A

( l(u r) +a r J (u r)) (A cos x g ¢+ A: sin ) l) (120)

In Radial Direction in the Matrix:

‘:I(r"’ “ z‘Jl (U.nr + aix llfl)(lxur))(kfx cos Xu: +
A

29
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11 11 11 11 .(1)q,.11
+4;" stn ) z)u»(.rl(u r)+.2 S ‘u :’ +

u;Ir Jo‘t).nr) + C:It ll:l)(ixnr)) (A;I cos xu: + A:I sin Xn:) (121)

In Axial Direction in the Reinforcement:

‘:‘r,l, . : Jo(tuxr’ (l{ cos ulz + l;' sin pla) g + (Jo‘tulr, +
%)

I

b;r Jl(mlr)) (Bg cos us + B: sin ulz) (122)

In Axial Direction in the Matrix:

6 () - Z(Jo(mnr) + b3t u‘f‘)(zun:)) (l{l cos u'ls +

M

11

5,

sin uuz) s + (Jo( mnr) + b? llt(’l)( i.uur *

11 11 1 (), .1 11
berdLu t] +b,r K (tu t)”la cos u s +

(123)

3, sin “n.)

In Tang- ntial Direction in the Reinforcement:

1 R 6 S 1y[.2 S 1
Czt,:, r(c1 +C, :) + Z Jl(tv r) (03 cos vz +C, sin v 3) (124)
v
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In Tangential Direction in the Matrix:

o) - (oo el e it o) o] z (5 +

o n{”(wur)) (cgI cos Vs + T a1a vnl) (125)

deplication of the Soluticna to the Boundary Conditions Equations for
she Intesration Constants

Primarily, the solutions must satisfy the boundary conditions expressed
in equations (60) through (62). The right-hand side of equations (60)
and (62) can be expressed by a Fourier series in the domain

LOS:"PLO

The following can be stated:

1 = 2 ) (- )™M cos BILE (126)

(-]

n.
and
[ ]
2 2 L atl

z = —R .L.Lﬂ_“nnzu (127)

ne=l o

3l



so that equation (60) can be written in the following form:

ifels - o) oo - o] - el - 7)ol - 079

= 240 - s'1) Z(- 1™ cos BLE (128
ne g
Also, equation (62) can be written in similar form:

el - ) o= 0] - e - o) ol - o)

1 11
24 1p" -8 nt+l
- l! J E Cl sin &IE  (129)
n n Lo
n

The following is obtained for equation (128) by introducing the
snalytical values for the displacements:

e A A
A3 ma(x‘.(l - BI’D o1 - 8] + (Jl( 0l ao(l = a‘)) +

o5 8,1 - #7) Jo(nl o1 - al)){\g coa(llz‘l - 8] +



A

+a, a1 - BI)D' -zq {Jl(uu a1 - su)) *

ot af”(un ot - ptt )} {A{z co.‘xnz(l - 8™+
A:I -m(xnz(x - BII))} :(1 - 511 + {xl(u" ao(l - eu) +
C;I u{"(un ‘o(l » Bu,) + .gz aoll - Bn) Jo(nn no(l * Bu‘ +

e P Hgl)(un e Bug} {Agx c“[xn'(l _ an’] .

At -m[xn.(l - an)] d = 24 (8" - n’ Z( 1)™1 cop LA L (130)

a=l

The following is obtained for the boundary condition expressed by
equation (129):

{ (tu ot - ;,)6 co. (1-9

3 ungsb-a‘))} o1 - oF) + {(m oft-8f) +
ba(l-lI,J‘m N p‘)D{ co...u(l-a
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!

-

Z; *{Jo(*u“ i 81

M

+ 3, un(.f:(l - BI)D

b1t ugl)( I ‘o“ i Bn)D {B{I - .(uu: ‘1 _ an)) \
1! m‘(uu.(1 i Bn))} oo - Bx) : {,o(mn ot - au’) -

by n‘f”(zun o1 - an)) + 037 a1 - 6 Jl( o |1 - 8% +

o1 a (1 - 81T w4l o |1 - Bn))} {.;1 cm(unz‘1 ) an)) A

2 ¢ . 130l
I:I oin(uua‘l - an)D B —;9- (al - gn) Z‘L—e— sin li‘:l. (131)

n=l

Equations (130) and (131) are identically satisfied only when

I o a1 o A1 _ ,IF _ 1 _ .1 _ II _ I1 = 0 (132)
Ay = A A A B, =3, = 3 L
Rurther,
I _ I . o . JII .
A; = A B o- ol 0 (133)

is also valid.




The following can also be concluded:

I - ax) « 4 (134)
°
A - au) R o (135)
°
uI ) BI) - F (136)
(.
u'ffy - o) - &0 (137)
°
where n = 1, 2,3, 4 - - -
From thi: the following eigenvalues will exist.
be b . : (138)
Lo l1-8
r _ Ir s
A 9 B (1 i axq (139)
°

Then from equation (130),
1 L 1 ) Y ) R 4 ¢ ')
A3 (Jl(inn "o) + CJ ao(l BI) Jo(inﬂ Lo A3 .!l inn (’o +

i f, %), 1 I 'y
2 “l (um co)*aa ao(l B )Jo(inn "o +
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+ azl ao(l - ﬂu) Hgl;(inﬂ %D - 2 lo(ﬂx - Bn, = 1)““ (140)

the first equation for the integration constants. The second equation
for the integration constants follows from equation (131):

1 s 1 R ¢ | O ¢ ¢ o
l‘ E!o(tnn "o) + b3 .o‘l gl ) Jl(mﬂ "o l‘ Jo ian "o +
1 .1 s 11 11 &
b, B ’(um -9»‘0) + b, .0(1 -8 ) Jl(im -9-%)+

a 24 , .0t
- ) 0 ] - T ()

By considering the boundary condition expressed by equation (61),

ao‘l - al) (c{ + c: :ll . pl)) +

ot )

c un(v‘ st - a‘))} . (.9(1 . 5“’ -

iy v | GRS L B




- Z;(,l(wu o1 - 81 +

v
C:I Hfl)(ivu uo(l - Bn))) (Cgl con(vn :(l . BII)) +

Czl un(vn z(l -Sn‘) ' 0 (142)

When equation (142) is considered, then, all coefficients from sine
and cosine func”ions from z disappear identically

€, = € = € = ¢C, =0 (143)
Im o, 11 _ a1 _ JII = 0
¢ c, ¢, c, (144)

Equations (120 through (125) can now be written, represeanting the
distortion as follows:

Displacement in the Reinforcement (Radial Direction):

) - o )

nel

k)



Displacement in the Matrix Radial Direction):

11 ) 1 an ). .11 .|, _an
% ("') 2‘:“3‘{"1(‘ L. a1t 4 ta, B (‘ L. gl &

i i
aer(i e gn"

(1) _m_ & nUE
a r H (146)
11 &, "o(l . .n)

Displacement in the Reinforcement (Tangential Direction):
elfrs) - o (147)
2 ’
Displacement in tl.c Matrix (Tangential Direction):
11
[ (r.:) -0 (148)

Displacement in the Reinforcement (Axial Direction):

I _mL_.t.)
- Yl lsls +
Zb{o( I-BI "o
bgr Jl(i — —‘-L‘— (149)
1-p L l-.
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Displacement in the Matrix (Axial Direction):

II II
r, z ji; {: (1 II L

11 (1> 80 L b0 __ L
(‘ o1 4, ”’3'*’1‘1_911%*

(1)( —Al X ADE
bile i (150)
AR T Lt Lo(l - Bn'

The boundary conditions expressed by equations (39) and (42) must now
is satisfied. The displacement given in equations (145) and (149)
are substituted into the boundary condition expressed in equation (39):

Rl
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Using differentiation formulas of the cylinder functions,
= 1
Z(-u" Jo(t—‘-m—-‘-)[ S RT.I
_ oI L s N
- { e fr-8") % 4,0(1 QTI 2v
. + 241 +
1-2v’3¢(1-a-", 3
(]
1
I.I)l-y
3 Bl b AN | b , i
Ll tlr-0t) % 1-2v

= 0 (152)

In equation (152), all coefficients of the Bessel functions o
and r Jl disappear because the squation must be satisfied for
all v in material I (reinforcement); this results in the two
subsequent equations:

I1.1 I, I 1
—‘—m—rl-v)l +V A2 +1—r‘n—)' = 0 (153)
‘b 1 - BI ‘ 4 3 ( 3 4 1 - 'I )

and
I 1 1 I, 1.1 _
'6 b3 (1 -V , v 1 A3 13 0 (154)

RBquations (153) and (154) represent the third and fourth equations
for the integration constants.
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B8y utilizing a similar approach and the conclusion that the expressions
sust vanish for all r in material II (matrix), the subsequent equations
are obtained for the integration constants by introducing equations (146)
and (150) into the boundary condition expressed in equation (42):

(1' < "n) 11 ':x + vt Ty ¢ “;I .
t -8 Ll -8

QA L o ass)
3 M
Iy .II I 11, .I1 II
(1 v ] byt 3 - VT 1 gt ey 0 (156)
l‘ _ vxx) a0 bI0 10, X1 gn _, II,II,
" (1 i .xx) 2 B & [1 - xx) 2 M
(-] (-] a

11,
't o a3 0o (157)
‘1 . v‘l) bfl ni‘ -y .g‘ Agx e 0 (158)

he end conditions of a finite fiber resulted in equations (153)
through (158). Note that the boundary conditions expressed by
equations (41) and (44) are automatically satisfied and hence do not
furnish equations for integration constants.

Two additicnal equations for the integration constants are cbtained
vhen the boundary condition equations (22) to (24), which states
that the stress vanishes on t... surface of the resin, are satisfied.
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Introduction of the corresponding solutions for distortion from
equations (146) and (150) into equation (22) yields a mathematical

expression containing terms, with a common coefficient

R
cos nm
%

S8ince the expression must be gzero for all values of 2z , and since the
cosine is not of this nature, the complete expression must vanish.
Use of this conclusion results in a ninth equation for the integration

constants
A i . all b . & b
Agl -2 o Jl(lnﬂ 1-9-) + inm 1—31—1- Jo(inn 29-) +
ofll-p ° l-p (o
R PO N H(l)(‘ Eg) .
2% 51 o U ekl
ofll -8 °

b b
L_y_ 20 . I 2
fon e Bn Ho ian Lo ‘3 Lo Jo inn +

b b
R & <2ll. 1 (1) -2
i ‘l V) ’ bonn Jl(inn Lo) '6 ‘o uo (um "o).'

b
i ‘1 - vn) bonn Hfl)(inﬂ zg) +
°

Al —m“‘ﬁ .:1 { (um _g) % bn (1)‘ )
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b
11 11 9
-
+b3 b ‘1 [ )Jl(mﬂl)"’

o "o

b

b:‘ b ‘1 . .u) uf”(tm -9-) « 0 (159)
A similar equation i{s obtained, utilizing similar conclusions, by using
the boundary condition axpressed in equation (14) and the solutions from
cquations (14A) and (150). As in the former cases, the coefficients of

the trigonomstric functions must disappear, and the following equation
is obtained:

b b b
I1 2 I1 (1) gl . 01 <2l.
 § l‘ {!l(inﬂ ‘o) * bz “1 (mn “o) b3 Jo(inn “o)

b b
11 (1) 2 11 -2
bl. llo (um "oD + AJ {l(mn %) +

b b
11 (1) L2 11 . all -}
., ll1 (um "o) + a, bo (l [ ) Jo (hm "o)"

b
.:1 b, (1 - 'u’ u:” umf- = 0 (160)

Two additional equations for the coefficient are obtained from the
boundary conditions given in equations (79) and (81). Substituting
o{l and GH into equation (79) yields an equation containing
cylindrical functions multiplied by cos nn t . Since the equation

base must be satisfied for any

&
cos nn
b
43 .
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the coefficients of this expression mu . vanish, and the eleventh
equation for the coefficients is obtained. Equations (145), (146),
(149), and (150 are utilised.

1

1 a
, A -2y ( _9.)
A - J, linn +
(l + vxﬂl - Zvl) {3[ L l - BI) . "o
i = J (um :9') + aI (l - ZVI’ J ‘mﬂ :9') -
"o 1 - .I e "o 3 e Lo
a a
2 R ¢ -2
innm l'o (1 V) ) Jl(inn &o))] +
1 I :9.) 1 ( o
v B J [ian + b, J.linn -
('oh . BI, lo[ o( 4, 3N 4,
11 11 a
, 11 - )
A - ], lian +
11 I PR l 11| 1‘ ] )
F+v)l Zv){[col-e] o
11 a 11 a
i m{L_y_*- J |tnn 2] + .II(_ -L“-—I' n{ (mﬂ -9') +
. all o( l/) 2 II] "1 4
"o 1 -] ° ao(l - B (\)
{ = :; nm(um :9-) + .g‘ J (um :9-) g
(‘o 1-p (V) {'o o "o

a a a
ian z: (1 - vu) Jl(inﬂ zz')) + C:I(ﬂél)(inn z:') -




a a
. £ {1 - JI) 4D ]
innm ‘Lo (l Y ) Hl (inn "o)) +

a a
vl ——an = I:I J (um 29-) + b:I H(l)(lm f-) +
8 ) o (-} ° ()

Iy

I1 R ¢ Sl . .11 S ¢ SIS Y MY | L N
by .0(1 B )Jl(inn Lo)”’a .0(1 8 )“1 ‘um "o))} 0 (161)

Using the boundary condition expressed in equation (81), the following

twelfth equation for the integration constants is obtained after intro-

1 11
ducing the functions for %13 and 13 ¢

1'*\)11--5I (4]

) § a a
4 | 4 3 4

1 ) 1 _ 20N
A3[J1(1nn “o) + 13 ao(l ] ) Jo(inn "o

11 a a
-LII LII i I:I - Jl(inﬂ zg) - b:I Hfl)(inn 29-) +
1+v"1-8 (-] (]

11 So) .o f, || 1 o'y
b Jo(inﬂ ¢°)+b‘ e (m ,_o)] A3 Jl(inn 2]

i f, %), .1 . & ')
., Hl (ttm ¢°)+a3 ao(l ) )Jo(tnn "o +
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11 _ Q1) (D) SN .
+a, .o(x B ) M) (1nn ‘b) 0 (162)
The twelve equations - equations (140), (141), (153), (154), and (155)

through (162) - exhaust all technically meaningful boundary conditions.
The coefficients to be determined by these equations are

1 .11 .11 .II xx I I LI I
Ay i Mgy i Ay i Ay 8y 5 Ay 8y 5 Ay s,
I . I.I _ _II  II.IX  _IT .II . II.II
B, 5 By by i By i B by i B byt i B by

The twelve equations are inhomogeneous and linear.

At _this point. $ha phyaical problss of ons finite-lsnsth fibsr in s
mAtxix is solver.

The determination of the constant is a problem of pure mathematical
analysis. PFurther interrelation to the physical problem is unnecessary.

Retarmingtion of the Intesration Conatanta

Because of equations (153) through (158), the coefficients

1 I .1 11 11 II 11 .11 1I . I1
'b"bb.'!’.lo ,l‘. 3'.6 bz.lnd l‘ b‘

can be expressed by the corresponding A coefficients. Equations (141),
(159), (160), (161), and (162) can be transformed by this relstion.
Equation (140) can be taken without transformstion and restated as

o) nde - i) Yo



i f, %), 1 I ')
+ a)" u (um ‘o) +a] ao(l 8 I) Jo(inﬂ z +

11 R S (I ¢ DY .
al. ao‘l 8 )Ho (hlﬂz:)

= 240t - M) D™ ey

Only the results of an extensive analysis are given in the following
five equations.

Equation (141) becomes

1 a a
I vl I -2 I I, ..l ra 2
i 1Ay Jo(tnﬂ ‘o) + Ay 8 (1 ’ )co [m Jo(tan ‘o) +

8 a 11 a
-‘3 1 Jl(tnﬂ zg) + —-Lﬁ 1 Agl J (hm -9') +
° ° l-v = %

a a
11 11 -2 I 11 . A 2 2] .
Aa L2 i lio(tnﬂ ) ) + A3 a, &o'l ] I] e Jo(tnn ‘b)

r) 3 %

a a a
ell. I1 11 . N2 (1)
-J: 1 .!l(tnn &o)] 1A 4,0(1 B ) 1 uo (um i:) +

X ’_fa.L-_uﬂ‘.x S s

Wi n
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Another equation is obtained through modification of equation (159) by
introducing equations (155) through (158)

Il b
{ ‘II fﬂ. -2y 1 J. (inn 214+
3 bo 1 - aII 1 Lo

(-]

b
nL .Liv 2
ST o(“‘“ ) ) +

‘;x .:1 .g L_u_ ,,m( o ..9.)
o 1 - a

IX b
1 -pi, . gl o X

R an)z +l,(m,;n)+
(+]

l-v
b Il b
m-ﬂl—'_u_i., um-g +
‘ol_vll 1 Lo

l-v

b I1 b
o L2 A2y H(l)(i -9.) - 0 165
"o ) G VII 1 " "o b

. An n z,LLng 141 . (um _g)
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Next, equation (160) is transformed by introducing equations (155) to
(158). Consequently,

b b
_ Al 2 "I _IT (1) ]
1A 1 Jl(inﬂ Lo)“‘s a,” H ‘um L°)+
I1 II rﬁn Ea Zy. _9.
Ay g 4 (1 ) % Jo(inﬂ %) -1 J ian )
b b
n n 2 (1) L (1) 2l .
4,0(1 ) % i i (mn )+ H, (um “o)] 0 (166)

Equation (161) becomes, with equations (141), (153), and (154)

1) . 1 (i-2 +(xJ2 ( '
s (1+vqﬁ-zv1)1-al 1 et i o)+

3 - aud a
..9.1_23_1., inﬂ-g))'
nm 1 4

A

I1 I 11

1 +lkvj‘r)L 1) i - vl)t 1) (im 12) *
L;u._ﬁ.lx.l_ (mﬁ .n)

e {ﬁw*w-zn .

-9'1—-1!- 1J (1nﬂ-9']

"ol-v
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r‘—ﬂ‘ -tk & ol )
= )]} =h+v“fr S {(‘”‘)

1 11
i

L} 0 , 1
Lii-at W 38 ¢
1. "1(“‘“ :,o) Ay o2 [+ WI)[1 - 21T 1 - g™t

a“)(um -9) b 1—331'— i Fen 4)}

e (1 ; vnul Nu, {m o(“‘" 'g)

(1-\:') 1J(im%:) +

L An :1‘1 M vq [1 a 2vn) {‘L 1 H( N 1an -8)
Y PR ¢ ¢ (1)( ‘)
z:- (1 v ) U EL z:}

2 lII II I

R vIT(l - 2 n) 1 -

(167)




Finally, equation (162) must be trausformed by expressing all B's by
A's by means of equations (153) through (158).

I N ‘)
1A l=2¥ 5 [(on 2]+
36*\01)11-2\:1 1-pt\1 -Vt °( %

4 T ¢ a
2l-2v 4, um_ﬂ.) +
m )\ Lo

a
o]

el I 3
443 [+ V] '1&- zvl) - : (m -g,

"o ) vx
1 1ot : )
J |inn
3 ll +v1) Zv I ) n ( "o
¢ PP § § a
a an )| ¢
o °
All I o L-2v", H (um -9-)
2[1+v‘1 wn)1 Iy, . Mt "o
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11 II

“h (1+v

I
11 1 B 4

I){ L_x_zlx_l_ (m _9.)

{b 1 - VII l ‘b

a 11 a
.9..L:.2)L.1J um-ﬂ) +

1A
3 % [+ -

il— -Lk = JLLI )2 iH (um %‘)+
(]

f- 1—-”— u“) inm -9-)} 0 (168)
ol -

To simplify, the six constants resulting from equations (163) through

(168) can be defined by

11 .11
8 A, Cs

It 11

=1 LA A3 - C6 (169)
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The coefficients (:1 to c6 are real numbers. Consequently, the solu-
tions expressed in equations (145) through (150) can be writtem by

additionally taking into account for (; and ;;I equations (153)

through (158) in the following form:

Reinforcement Distortion in the Radial Direction:

1
‘l(r.z, - Z(Cl 4 Jl(t 1—?131‘;) +
n=]
c,rJ, 1 —m--LB (170)
1 e 3 L DI l

Matrix Dis.nrtion in the Radial Direction:

1 fee) - 2{‘:3 t9 (‘ L.l ).‘;) *

(D), _ao__ L —hn__ L
¢, N 11 su" +CirJ 11.91“'

Cor i u(”(z —mﬁf-n L—F“F‘a_’- (171)

Reinforcement Distortion in the Tangential Direction:

Gfs) = o (172)
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Matrix Distortion in the Tangential Direction:
&) (re) = o (173)

Reinforcement Distortion in the Axial Direction:

e - _Y'_Z{( 24.(1-!1]) (1_m_‘_

n=1 4 '

C, 13, t—m—'L)} —r”-'—,» (174)
1 - gt 1-8

Matrix Distortion in the Axial Direction:

¢+ 25 Y o sl cmag)-

11
2 L[l - QJ)

2] | My, no__ E

(cb % c6 ™ i llo i 1 - BII L

..JIL._..I.
Cs ri Jlli > 3 &

<1)( _L:.l}
C,t M i sin (175)
(I U R § 3 &Jl N Bu,

34



The Bessel and Hankel functions
3oftx) o 1 af1x) L ugl)(u’ and uf”(ta)

sust be recognized as real functions for x >0 . These functions are
tabulated in the literature. The following identities interrelate the
above functions and the so-called modified Bessel functions: (Ref. J)

o. 4 chtx) - Ia(x)

T ué"(u) - %Kojx) (176)

Especially

)

3 | tx)

..nzt.rl(u) - -1 u) s 11(1:’

{ Hgl)(tx) ﬁ‘o"“

12 ufn(u) & ufl)‘tx’ - %xl‘x) (177)
Introducing further abbreviations,
an a
lb - kl (178)
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_Z_g - "2 (179)
°
E (180)
2 r " m 180
(l + vx,zl - ZvI’ 1
11

‘1 - vn,-(ll . qu - . (181)

In addition, the following is set:

The following equation exists for the determination of the
C, (1 = 1¢to)

'Ji c1 - Dj wvhere jJ = (1 to 6)

The 36 B's are defined according to the equations used to this point of

development:
3, ° ;’; ’1(“1) (182)
>, ° 73‘9- (1 . ’1) 1°|k1) (183)
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13

14

15

16

21

22

23

24

23

26

_z_ 2 v

Vzﬂo

l - Vo

= "j_'d [2 L) + % ‘1(“1’]
RN

57

(184)

(183)

(136)

(187)

(188)

(189)

(190)

(191)

. (192)

(193)



31

32

33

0
0

1 -2y 2v
& ToRA ufk) T T 1k
1122 P W

k, T- B, n Ki(*g) * T-v, 1-azn‘o“zl
L z\az
.;ﬂg. l-vz I("z) = vy 1“‘2)]
22 -, +1 1 -2
,;"gL T- v, %‘o“‘z)”‘zf-_\'arzrzr“w‘z
0
0

nﬂll‘kz)

58

(194)

(195)

(196)

(197)

(198)

(199%)

(200)

(201)

(202)

(203)

(204)

(205)



51

52

53

,,,,.;L 2v) 11 ()

-\a1 l-al )|

lt::_:”l [“ T[] + 2w 1("1)]
T A
T

"2 Il_-vz'l L | Io“‘l) t 11“‘1)]

m 1 -2y

I-v] % T‘l -~ ‘o“‘l) - 2, ‘1(“1)]

m 1 =2y
' T—Lg:[l_v-l 1) - < ll"l)]
m, ¢ k)
':{'11_9'[1-_\:1 5 (“1) v 1(“1)]

J‘_[ 211‘("1) __z 1, 1’]

2v
1_-'25;['_\;;21‘ 1) .,__1_2" 1‘ 1)]

59

(206)

(207)

(208)

(209)

(210)

(211)

(212)

(213)

(214)

(215)



Further,

Numerical Determination of C's:

Given dimensions:

(216)

(217)

(218)

(219)

(220)

(221)

(222)

(223)



Basic computations:

Definitions:

!
v, o I1(“1

1
2v, o lt1("1

Q) "<
b F
=) €
@ "
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(224)

(225)

(226)

(227)



[0 - @) 1) + 14?1'[01(1 - vy) - A "2)]

ﬁ.k I [k ‘llkll
e, ‘b‘kl) + % 11 kl & kl [02‘1 )l VZ) )

°1(1 i "1)]

G2 o] - e+
az(”vz;]}xi;g

[%(1 +v,) + a1 - VJ] o[y

k, I Ik

)
1 Lik

vlll - vl' xlkl' ILL(')V e }Jfkkd Iﬂl:l-)-

v |t - "1)[2 1fy) + w1 1)] *uf vy ;‘EH

62

(228)

(229)

(230)

(231)

(232)

(233)

(234)



10

11

12

13

vz|1 . "1’[2 Ko‘lr.l)

- Kk Kl‘k])] +

v, 1 = v.] k, K [k
Li*
( v. k. 1 [k
1-v)-
1 L[,
: "z) 11(“2)”‘21 k
1 "2) ‘1"‘2)“‘2 Kol%2
2 . ) 1 . . } 1
(z\a2 vy + 1) 1 [k, kz(l 2v, Il‘kz
[zv-v +1)x k‘+k(1-2v)t(k
2] * %k 2l ®1\*2
ky Ik, +2v, I k,
k, ‘ol“z) - 2v, "1“‘2)
l‘zl-v)'*v Z)].lk
A

Gy ~ %- " I

2n ‘1‘;1)[31 - 02] +

4 a n II l

1 - Vo

63

(235)

(236)

(237)

(238)

(239)

(240)

(241)

(242)

(243)

(244)



(245)

(246)

(247)

(248)

(249)

(250)

F, v
Y7 © ‘l - 2vd.lvlil1 13 vzl l’l‘kl) (251)

F. vy
1l - d (252)

i)

- xdkz) (253)
2 %

Flo"T- 2v, ¥, Ill“z) (254)



24

25

26

27

28

29

30

31

32

a3
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(255)

(256)

(257)

(258)

(259)

(260)

(261)

(262)

(263)

(264)



(265)

% 30 n !22 28

2L r..r

[ J 4 - “
l” - l'“ rn (266)
B .'.u

r s P - 4 (267)
36 21 Lo !31 33
Then

ng, N, F
c - —tl 26 (268)
6 1-8, Iy

nmqg, N, F r
¢ * T3 ;u-'#-;uc‘, (269)
o 2] 'a1 3l

22
LIl- F,, C r.cC
n n!zz 2!22

c,
. 2 ..6..2 L
IO ‘t““‘r[ P T 4w
on Nlll - vzl
2 7 T vlp = .1”1 = vz, L Fg -
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c, +

2'1-3“ |1"I| -
"= % -1 'scs'x.o'za
Vall = v, ] *+ V11 - vzil
[-ll 4, - an Io("t’ C,) (21

(]

L
> [‘1 - ’2’ f%‘o‘kl) ¢+ |1 - 52) Io"‘l' Cy -
(1 = ’1) Io(kl) cz} (272)

INE INFINITE FIRSR IN A RESIN CYLINDER

The basic equations (1) through (10) are, in this case, also valid, while
the boundary conditions change insofar as there is no finite length
expression given. After separation of the var.ables by introducing a
Bernoulli product of the form

g = n(r) oM

and further introducing in the obtained differential equation the
potential

o - SRR L)
dx x

67



vhere x = )\r and )\ {e the eigenvalue. The following solutions are

obtained

X

{1‘1’.3, - Ar+ ['1' Jo‘t).r, +3,1 Jl(m)] cos \s (273) .

‘ P

11 . 4 ) ) .
‘l t.l, Azr + - + .lstr llo ‘nr’ + l‘ ll1 (1\:’] cos \z (274)
rs) = 4, + 3. 4 m) + Bodr J ‘m‘ cos Az (275)

N’ 4 S Yo 6 1
‘gx ra] o A +ﬂ£l7t n‘f”‘ ur) + By n{l) m,] cos s (276)

Applying the solutions to the corresponding boundary conditions, eight
equations for the integration constants B's result. The system deter-
ainant was homogeneous and the following four eigenvalue equations were

—
)+ sw) - o

) a0 u)  o

) + ) - & 3, fe] 3] = o

1) « 0 o0) - ) ) - o
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*
The methods given in Computation of Hankel Functiong did not result in

conjugated complex roots. This indicate: that all B's are zero in the
solutions expressed in equations (273) through (276), and the stresses
for the infinite fiber become

RISt N (ux ) auJ 1

1
. ‘"‘"%'2"’1 1+ l-; [1-2*)

(281)

°{1("')

o
2
11 [BI L ad G o) 1, [‘%)2 - ’;I
2 r.z} o 4t (282)

AL I °{1('1‘) (283)

are) -

1.1 - + a
SRR < S 1 B
L

* compvtation of Hankel Functiops, Netional Bureau of Standards Report
No. 216.
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- 2! c{l(r.z) (286)

2
1 gl -+ (aI - an) T 97(1-2\;11)

- 11 v
lo] r,2 - ]
33( ' ) i‘ r) 2 1 - 2
(”’" 1=2vi] ) o %(l-zvnh -5!- X ( - ‘5)
b E 14y b
1 11 1 11 1 11
%12 " %12 T %3 T 93 O3 = 933 = 0 (288)

Since the infinite undistrubed fiber is not realizable, equations (280)
through (288) are values which are difficult to verify by test; however,
they can be used to provide an estimate of the magnitude of residual

stresses.

For instance, if the relation between the reinforcement and resin

modulus were

I II

E ~ 20E
Vi T v, ® 1/4 and b > a

and assuming that the total difference of contraction including polym-
erization were 4%, then by using equation (281) the following would

ll ' 0-0

This indicates that the radial compression of a glass fiber with a
modulus of 11 x 106 pesi would be 15,700 psi on the surfacea of the fiber

(r = a).

70
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For b = 10 a , the axial, tensile stress in the resin would be
14,000 psi which would cause cracking; the resin would therefore become
a finite length and the equation for infinite length would not be
adeguate. For this reason, no more emphasis is given to the infinite

length fiber with assumed boundary conditions.

The problem would be different if the boundary conditions that are no*
phvsically imposed were derived in the form of a differential equation

which provides for cracking in certain unknown distances.

IHE MULTIFIRER FROBLEM

Assume that an infinite number of fibers are packed so that in the
limiting case, the tightest packing is possible. A configuration such
as this would possess a certain symmetry which would allow for rigorous
analytical treatment.

Using the configuration depicted in Figure 3, any one fiber can be con-
sidered as the central fiber surrounded by six others (all fibers are
imbedded in the matrix).

Boundary € >nditions for the Multifiber Problem

By assuming three-dimensional shrinkage, a boundary condition is obtained
on the interface between fiber and resin which is similar to the boundary
condition for a single fiber in a resin cylinder, the only differernce
being that the distortions will depend also on the angle @

] CXUREY IR R RPN R R

. ‘0(51 - sz) (289)
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s ..0(1 -8,). 0.2t -5) = 0 (20

3

afi-n). oo afi-n)] - @fufi-n) o0 ofrs)
- 2fs, - 5,) @

Where 5{ is the displacement in direction 1 (or r) 1in the reinforce-
ment, a, is the radius of the fiber before distortion through shrinkages
takes place, and z is, similarly, the coordinate before distortion.

Referring to Figure 3, it can be assumed for reasons of symmetry that
the hexagonals will remain regular during the shrinking process, and will
become proportionately smaller as the total composite shrinks.

The displacement vector perpendicular to OB must vanish if the triangle
sites OAB remain straight.

For the reinforcement:

;; [r(l 3 eI) , 0, :(1 - e‘]] -0 (252)

For the matrix:
el -of) o efi - 519 - o (25)

For the OA line:

In the reinforcement

3 [r[l -81) . 8, 21 - 91)] -0 (294)
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and in the matrix:

;:1 [r 1 - eu, Bt an)] -0 (295)

Along the AB line:

cos|d - 3

o

Equations (292) through (295) must be valid for all values of r and =z ,
anJd equation (296) for all values of @ in the region where

J
0 < ¢ < 6

Since the triangle OAB repeats 12 times in each hexagonal, it is possible
to solve the problem by considering OAB only.
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Qifferential Equations for Displacemapts

General partial differential equatious tor distortions considering the
*
cylindrical coordinate system were derived. These equations

2 2 2 2
uﬁl.p_l_ 2—.‘.14-}- 3A+ 1 16;14,
1 =2y arz 2 t,2 awz 2 a‘z 2(1 = 2v) r ArdY
a%g 28
2(1 - 2v) ards  2(1 - 2v) rZ Y
] 4 ¢
Aoy l1l(_1._41) .
1 -2v rloar r 0 (297)
2 2 2 2
1028% .19 2 2% . 12% .1 %,
2 arz 1-2v wz 2 azz 2(1 = 2v) r© ArR
2% 38, a8, 8
_.1__.1-_‘1-4..1.‘1_'_‘131._14_1-_1. 0 (298)
2(1 = 2v) r 293z 2r{l -2v r 3 or 4
2 2 2 2
128, 1 2% 13-y 3%, N
2 arz 9 rz wz 1 2V 3:2 2(1 = 2y) oros
L2% . 1 1% 1
20 -2v) r dp3 T 2(1-2v) r 3 Taax -0 (299

* Equation (A73) in the Appendix.

15



The following identities are noted.

el I S et | - by ., l-
2(1 - 2v) 1 -2v 2 2(1 - 2v) )

These are used in equations (297) througn (299), which on rearrangement

and simplification become the following sequential equatiors:

14 38
1-2\) ar[r ar )+a_zz+% -aaz]+

a;l a%a a‘l agz
- l - =
> 'aaz'['(az ar )] 2 3 [: 30 'r%gz s ar] 0 (300)

1 -2v r Qlr 3 !

1@.(1.[ et) - 3_‘1]} L2 [3_‘1.1
2 ¥r\r|ar 2 2 dz|3 r

28, 3%
-y 1 afl ¥, rar,gJ]

|~

] = 0 (301)

(2%

®

.14
-2v az[ l"1)4' %—2]

L .b.[,(a_gl-il)].,.}.j. 1l EEJ. 6_‘2] = 0 (302)
2r Jr or oz 2r Q9 |r X oz

Some recurring functions in the previous equations are noted and defined
as F's as follows.

14
, 1
l-2v‘ x| ‘1] @ 't a—cpz) - L (303)
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28, 38
%(3_31'571’ * 5 (304)
L[S 2 J| - 305
il At 3 (303
L 38
-1 -
213 -, o0

Using equations (303) through (306) in equations (300) through (302)
yields the following partial differential equations:

oF oF oF
4 l J 4 -
ar * r 2z + a0 0 (307)
oF or
l 4 - l J -
1 .2 lr r3. + 0 (308)
dF ) 4 ) 4
- .1 2.1 _& .
oz r dr r Y 0 (309)

Now F's can be considered as potential functions. PFirst, efforts would
be made to find them. In addition to the previous three equations, the

procedure that follows renders one more equation, interrelating the F's.

Multiplying equation (305) by r?2 and equation (306) by r yields

38
%[‘a?vl e ‘z)] -y Sl

17



and

dir ¢ .14
%[-13711 . ;1] -rr, (311)

Partial differentiation of equation (310) with respect toc sz and
equation (311) with respect to r gives the fullowing:

2[: ;21 ar
[asac YT LI v (312)

-

2 2
1[_[_21“‘ 25 .1,,' (313)

2 arac aracz or

Susmation of equations (312) and (313) gives

2 2
3¢ 3 4 ar
2 [azaw ree ™ % x|t 'a, (314)

Partial differentiation of equation (304) with respect to @ gives

' BAUIRCY L)
2] 39 par Q
i.e., ]
-2 )
Y LAY I o)
2| 323% Ardvy r

Noting that left-hand sides of equations (314) and (315) are identical,

one obtains

ar 3F, d|r F
ot B = 0 (316)




Separation of the Potentisls:

Multiplying equation (308) by r and partially differentiating with

respect to s , one obtains

aZe. %, %
i. 2.4 .9 (317)

r -
3 zz dsdr A5

Partial differentiation of equation (309) with respect to ® gives

2 2

%a_:L a_c%‘ r’ - 0 (318)

Summation of equations (317) and (318) renders

2
LU LU VIR
a‘2 r wz dsdr Wi
i.e.,
2 2 .2
cth oy 8 YL 4 ) iy
" r 3@2 albr dr
From equation (307),
of or or
piy PRl B s |
.- dr L r s (320
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Division by r gives

2 2
dr or L) 4
P r w o 4 9
12:

Partial differentiation of equation (307) with respect to =z gives

2r 22,  a%r
dzor + r a:2 2 .Y 2.1 0 (322)

Partial differentiation of equation (309) with respect to r gives

a’r
asar ar r ar r (323)

Subtraction of equation (323) fron equaticn (322) renders

r 2 ar r ar] a-aco ar ]



2
2%r ar ar r

From equation (316), rearrangement gives

) v (325)

K
e

T
-

:

oF
Substituting for ;‘1 from equation (325) in equation (324) and
multiplying the resulting expression by r gives

2
.. 21 l’z]+.a. 1% AN,
a.2 ar | ar W) .2 @ r
F
k2] -
i.e.,
2
LY .a.xfz)u.i‘.’z
as dc {r ar r2 awz



(326)

~ |D

From equation (309),

The equation (326), after resarrangement, becomes

(327)

4
N
oL
or
.}

o~ ~
. ]
s i
FYF] ...J..
o [P
"
7“ i
+
2?.42@ J
~© © e ] %
© o
o~
L ™ o~
+ ER—
= 4%
r—r
© |© ("
[
= +
S, o
e gy o
0 o~
e &1

a%r
2
ox
22y
+
:%

i.e.,
.Y 4

Bne | 5o
Q0 |

o~ e

e [ 3e
©

— ™

e 10
Q0 |

1~
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2
/P 1%, 2]
- r or dr r|ar ar
S - §
T ) (328)
Use of equation (328) in equation (328) gives
alr a’r ar 3F
2244 22,1 .1(, _z). 2 %)
az f r or ar dz
13:

Multiplying equation (308) by r and then partially differentiating the

resulting expression with respect to r gives

ordy ar arae

2
3°F a r F

Partial differentiation of equation (316) with respect to z renders

2 2 2
or 3'r 3 | F
1 _2.,2 3. ( 4J - (331)
r 2830 3z 3zar

Summation of equations (330) and (331) gives

2
3°F
. 2
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From equation (307),

F £ r
o WL S o |
r r 3s .1
Then equation (332), after multiplying by - J% and rearranging, becomes
r
2%r alr
o S s '3)] )
os r & r
l‘:

Partial differentiation of equation (308) with respect to =z gives

%

(o

blbv

o

Dividing equation (309) by - r and partially differentiating the
resulting expression with recpect to @ , one obtains

2 |r ar or
A |d]s 2l 2] 2 k] .
r)*w(,z 3 *aea(ff T ° (22
Summation of equations (334) and (335) renders

1(-12- ) rra)+5—r +3—(—"’-) (336)



From equation (316),

&=
|5
+

1
r
Multiplying by r and rartially differentiating with respect to r

2’r ar
— . &3 Al 2
o [T ]*ar Falf ’a']

Dividing by rz gives

L 2 ] [3;1]+:}2‘§;r3%‘r}'“’] (337)
Substituting for
&[4+
from equation (337) in equation (336) gives

] am( )+ a_,+a_(_a)

i 2
tz ar T ar r Fé’]
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or, rearranging

et L0 d af & ,,’]
a.Z r2 a@z r2 ar ar 4

2
. A r!')-:% ar rz 'g;(r!'s’]

2 2
= Ses; ‘r FJ‘ - :%'[rz Ses: r F3, +2r §% ‘r '3)]

aF
..Z_LL_Z.-Z_.I (338)

l,2 dz Y ]

Separation of the Variables

Separation ot §'s in the Form of Partial Differential Equation
Containing F's:

Reference is made to equations (303) through (306).
Separation of ;l , the distortion in radial directions:

From equation (304),

3, 2F, 38
- -
v e (339)
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From equation (305),

‘ !2) -2! r +-a-sl (340)

Multiplying equation (303) by -1—:'55‘ gives

Differentiating with respect to r

wle = ‘1)] r o (_z) (240
Now
228 2 |¢
_2+_.§._(_2) ) , (_z_)
cedr Mary r Y ar

28 ;
2[R g [ [ 3) % Bl

b

!a!) 1 2 ¢
L Al Bl 2)l.d 22
vl b A r2)+r2 e (gzr) (362)

Using equations (339) and (340), equation (342) would become

2
i_‘1+.a’_(fz). 1[1&.32]-1 o
f2dr  ¥r |r 3z |3 r t2 %
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2 2
4 . F

3°¢ 3 2 . g, .3 3 3, g 3 zl

3z .} r v .12 rf ag

Subtracting equation (343) from equation (341)

2 2
af1 2 L2813y
ar [¢ o |F ‘1, ‘2 r2 awz

Separation of §2 » the distortion in tangential direction yields:

From equation (305),

e i(rgz’ +21¢2F

. -4 dr k]

or
S% "1, - "aa?“‘z)'”'s"s

from equation (306),

.14 ] 4
J. - J
3% r[Zl-“"O'az

(343)

(344)

(345)

(346)



Multiplying equation (303) by l.f.%! and then partially differentiating

1
with respect to o ,

2

e
afiapg)les2,t? Ll 21
.12 1 amaz a 1 -v ¥
Multiplying (r) results in
2

2 l=-v W

] d r
a.[n.(,,,],, 2 _‘1)+_‘1 Sl B
dr 1 ot | ¥¢ -~

Using equations (345) &nd (346) in equation (347) gives

2
3°¢
o r-g;(rcz)+2r3r3]+r-§;[ ( 2r, +—1)] ;1

W VR
1 = v o

Rearrangement renders

L 4
r ar 2 2 3&2

aF d
& 2 _4 .1 -2v _"1_,2123
2r 3 + r 2 ar r P3)
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(347)
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Separation of §3 , the distortion in axial direction results:

From equation (304),

i DL SR Y
oz r r

From equation (306),
.1 4 .14
— . i 3
w - Ry W

From equation (303, by multiplying v {.f.é! r one obtains

38, af

%("1)”5‘1 9 1-v N

Partial differentiation with respect to z gives

2 2
.14 3°¢ 3¢ oF
—h —_— o =2y 1
'az]”az! T T 1-v T
Use of equations (349) and (350) in equation (351),
n.[,(i‘z _z)]”_z 2 (e lff}.).l_-_&,fl
r ar 4 r 1 -v oz
Multiplying by %
28 a’¢ aF a%e aF
i .1(,_1)+1 S PR e B R S - R & Yl
r Ar Ar r Ar 2 a.z r aQ r2 aq,2 1=v Az

(349)

(350)

(351)



Rearranging

2 2

5,1 A.(,E.‘z)+.L 25 1_-zx°_’1-1(2§z+°_’<;)
3z r or or t2 wZ 1 =v 22 r|or P Lo
SOLUTION FOR ;J

Assuming that the F's are zeros, equation (348) becomes

alg, ale
S EYNY R P
.14 ar( 2’ az aq32
i.e.,
Y 2%, %
-5 2% ] Bt ik Oy el w
ar T 527 LIRS | 2 ¢
.1 d®
i.e.,
2 2 2
14 14 ) 4 ', 23§
;2+r#+2r§z+r2—71+r2 3 +—‘2'1' 0 (353)
or dz 0¥
Let
§, = R, (r) ¢,(®) 2,(2) \354)
2 2 2 2
Then equation (353) becowes
I¢Z+3rk'¢z+r2ln¢Z+rzl¢2"+
272 72 2 "2 2 2 2 2 272 "2
.‘2 ¢, zz = 0 (355)
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Dividing equation (355) by !z

1 1] (1} 11}
R R A @
1+3ri3+r2-‘-1+r221+-1 -0
2 2 2 %
or
" l' " 1]
R A (]
rziz+3ri1+rzzz+l - .4 . Xg
2 2 2 ¢
vhere xz is a constant independent of r , z , and @ .
" 2
9+ 29, = 0
and
(1] | ] [1]
R R A
rziz*iir-z*rz-z'*l - *Xz
2 R 2, :

The last equation can be rewritten as

‘ zll
" 1 2 - - 2
Bedaedl-d)-dd-

vhere n 1is a general constant independent of both r and

Equation (359) may be separated as follows:

"
2
Z,+u 2z, = 0
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(357)

(358)

(359)
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] R
R +-1(1-x§)-u232 - 0 (361)

"
lz +

"

2
r

~

The general solution of equation (357) {s
0, = B cos [0+ ) (362)
where Q% is the phase angle and Bl an arbitrary constant.

In the case of six symmetrically spaced fibers surrounding a central fiber
it i{s expected that

8@ = oz(w{,ﬂ) (363)

vhere j 1s any integer.

This means that

- P ul
cos \2w+q>° cou{xz ‘cp+ 3 +q>°
jn
s cos {Xz@ + @o + —T-z} (364)

For equation (364) to be satisfied for any m ,
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vhere k 1is any intege:r.

Therefore, equation (362) becomes

6 k

¢2 = '1 cos (6 ky + Qo)

and equation (361) becomes, after dividing by uz

lat

Then

d

tn}"

dr

&

{1, x
. =y —2 (1)
I
e oaki b .
iry dx

~N

dR 2
m R b - U RE

(365)

(366)

(367)

(368)

(369)

(370)



Using equations (368), (369), and (37C) in equation (367), ard multiplying

the resulting expression by -1 , yields

2 dx

éz.y}. 21.9(1-19—&2—1)‘ «- 0
ax x ‘2 2

To transform the last equation to a Bessel form,

e

R, = x"y(x)
Then
ar
Ex'z = o x¥ly) + 2%y ()
i, 6-2 61
% = 8- x" " y(x)+28x  y'(x) +x?y'(x)
dx

(371)

(372)

(373)

(374)

Using equations (372) through (374) in equation (371) and dividing the

resulting expression by x~ results in

2
Y (x) + Zﬂ.%.}. y'(x) + (1 - 29.12_'.1)y t{kta D} = 0 (3715
b 4 X

Revriting equation (375),

2
yu(x)..,.z.a_:_}.y!(‘).'. 1_29_1 j'?"M y (376)

X
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@ 1is to de chosen so that

2043 = |
i.e.,
6 = -1
Then equation (376) becomes
: s ©?
yn.',%... 1 - 2 y ® 0 (377)
X

Equation (377) is a Bessel equation and
y = 3, 3,00 + 3 8 ) (378)

This 1s the gencral solution wvhere .2 and 33 are arbitrary constants.

From equation (372),

R, = xy
S8ince § = -1,

» &
‘2 x

Substituting for y from equation (378)

B B
R, (x) L 5 0+ -;1 ué:) (x) (379)
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Because x = {ur , equation (379) {s

B 3
k() = i—[-} I ) + 2 “é:)““")] (380)

The general solutior. of equation (360) {is
zz - l‘. sin ‘m + 'o, (381)

vhere '4 and 5, are arbitrary constants.

Substituting for lz(r) A ¢2(Q) , and Zz(:) from equations (380),
(366), and (381) respectively in equation (354)

B B 1
$,(r, @, 8) = j;[-} I 0) + 2 1 ()|

[n1 cos ok + oo)j ['4 otn | s + so)]

- -:r- [ls Jg, (Lur) + B né:’(m:) x

cos 'Gw + ”o, X sin ‘u: + 'o’ (382)

vhere
B, B, B
. ® JJ—&
5 1
and
B. B, B
B' e —l—%—l
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Note that | may assume many values, dependent upon boundary conditions.
let u = My vhere n varies from 1 to infinity and is an integer.
As stated earlier, k varies from O to infinity and {s an integer. A
general assumption is that the constants BS 5 86 R qg , and L and
corresponding (2 in equation (382) would be different for different
combinations of k and n . To indicate this, the said parameters would
be properly subscripted. Then equation (382) would take the following

form.
. e | 1)
Saak(fr ® 8) T [’snk Iow| at) * Boan ol ‘%')] 2
cos ‘6kw + ank) x sin (“h' + 'onk)
(383)

l2nk ¢2nk Zan

Nov the total distortion of 82 is a summation of all ;an given
by equation (383), or

¢2(r. e z) = Z g $onk(Fr & 2)
n. -

- Z Z EnLr [’:mk "6&(‘%" * Bonk “((nln)( ‘“n')] x

n=]1 k=0

[co- (6\@ o, )J x [.m (unz + 'onk)] (384)
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SOLUTION FOR 51

Consider equation (352). F's are to be taken as zero.

2

d 3 d
——:}-+l-§-‘ra—‘1)+—%—:1- 0 (385)
dz SOt J r o
i.e.,
2 2 2
3 ) d d
—;}'*'—:‘“% _a_;1+_%__:1_ 0 (386)
2z ar = r ¥
Let
€,(r) 0,(®) 2,(r) (387)

Then equation (386) becomes, after dividing by 83 and rearranging

z'.+ ” z +ll' z +L l ”
R T R B T Il T T I s B I T

i.e.,

" "

0 4

i (388)
3 3

vhere v 1is a constant eigenvalue, independent of r , ® , or g .
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Equation (388) on separation gives the following two equations.

23+u Z3 = 0 (389)
and
. x an
Sl 2.4 302 (390)
3 F %3 4 9
Equation (390) is
l" ] "
R ~ Q
Pder A2 0 L2 .2 (391)
R, R, o 3

vhere Xa is a constant. Equation (391), on separation, gives

(1] 2
°3 + X3 ¢3 0 (392)
and
dZR dR
2 e | S B B =
r ;:,1-” 24+ [-w?e x3)13 0 (393)
Let
x = {rw (394)
Then
dR dR dR dR
—_— . X 3d & | x 3 - B
r dr iw dx dr iw dx (1w) X dx (395)
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Similarly

2 2

dR dR
rz —2}' - xz —-!1 (396)
dr dx
Then equation (393) becomes
an da
- M | —3 2 _ 2 -
= tx =L+ [ x3) R, = 0 (397)

Equation (397) is a Bessel equation and its general solution is

Ryx) = € 4 () +C, u{;’(x) (398)

14,

A similar argument can be utilised in arriving at a solution, from
~quation (366), for equation (357). Then one obtains, with Xs - 6g ,
a solution for equation (392).

¢3 - C3 coa( 6gy + CB) (399)

where g 1is any integer and ¥, 4n arbitrary constant.

Noting that x = {rw and xs = 6g , equation (398) becomss

& (1)
R3(r) C1 J6'(1rv) + C2 Hbg (irw) (400)
The general solution of equation (389) is
2,(z) = C, sin (uz + zO) (401)

where z, {s an arbitrary constant.
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Substituting for la(r) : ¢3(¢) , and 23(8) from equations (400),
(399), and (401) respectively in equation (387)

¢ (r.on) = [cs Jog4T¥) * € ag:)(m)] [co. (m + q:o)]Ein (vz + .o)] (402)

wvhere

Note that v may assume many values, depending upon the boundary conditions.
let v = va vhere = varies from 1! to infinity and is an integer. The
constants (:s ; c‘ » @ and 5, and corresponding §3 would be, in
general, different for different combinationc of g and m . To indicate
this, proper subscripts would be used, giving equation (402) the following
formy

(o ) g e [

o [uu [ws + e )] (403)

ong

o S

The total {3 is a summation of all 33-.'. given by equation (403):
$4(r.9,8) = Z; ‘3“(!'0.!) . Z gcs‘ J“( 1rv-’ +
=] g -
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+ Ch Héi)(iw.)][co. (6;@ + vm}] [ua ‘v-s + 'Oﬂ)] (404)

COMPLEMENTARY SOLUTIONS FOR ;l

Taking F's as sero, equation (344) becomes,

2 2
"¢ 3¢ ﬁ

After simplification, equation (405) becomes

2 2 2
3¢, 2 .1 4 %%, ¢ .1 4
e Lot
os or r ¥ r r 1 4 L
Complementary function:
Consider
2%, a%, | ) 2%, ¢
e g
as dr r & r
lLet

I NORFNOENT
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be the solution of equation (407). Substituting from equation (408) for
{l in equation (407) and dividing the result by ;1

z.. 5 na on
Sdedsdsb. L o (409)
1 1 T oxfe x
Read justing,
‘u l. " z“
il.'.—lL...;:-l-.Jz-- -El- + B (410)
1 Mok ol r 1

vhere § 1s constant. Separating equation (410), the following two
equations result:

u+2 4
Zl 921'0 (411)

2
r

‘" ‘ °"
il+—1-+—l-2 --L-az = 0 (412)
1 r ¢1

Consider equation (412). Mulriplication by rz gives

z." r‘| ¢"
aek g ok .52 2 . B _ 2
% + i 1 -p8°¢° - ) M (413)
or
o, +2lg = 0 (414)
1 171
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and

" [}

r71 | g 8

—l-l+-‘—l-1-ezrz-x2 - 0 (615)
1 1 1

Multiplying equation (415) by ll

g " A 2 .2 . 2 -
r ll+rll-ll g r ll A ll 0 (416)
Let
x = {Ppr 617)
Then
a» aln
rgb - & -~ & . , 1,2 1
1§ dx dr dx 2

r
[_L] 4.3 u
2 dr L dr .’-‘F dx { -x dr

a&
5 ‘2 2[.BZIZ - 12|2r2 = xz
dx
Then equation (416) becomes
dzl dR
2 g 2 _|,2 -
x az +xdx +(x (Xl'fl,) ll 0 (418)
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The solution of equation (411) {s
z, = A otn(g +3) (415)

The solution of equation (414) 1s
o, = Aycos[r@ o) (420)

vhere 5, and QB are arbitrary constants.

Note that
Oﬁw-'ﬁ(c+?} (421)

wvhere j 1is any integer, is expected, due to six-fiber symmetry around
the central fiber Then examination of equation (420) gives

Xl = 6 (422)

vhere o 1is an integer.

Now equation (420) becomss
’1 - Az cos ‘6@ + °o, (423)

STquation (418) is a Bessel equation. Noting that x = {fr from
esquation (417) and )‘l = 6k from equatior (422), the generni solution
of equation (418) may be rewritten as

R @) = AJ A ull) (18r) (624)

(ipr) +
3 \,'_— 4
360,2 +1 v%az +1
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Combining equations (408), (419), (423), and (424),

gl (rogl.) = ‘l(t) 01 (Q) zl(’)

(1)
= A, J (ifr) + A_ H (ipr) [coo(@*‘
[s Vs + 1 ’ V32 + 1 J
°, )] [.m (u. + :o)] (625)

vhere As - Aa Al Az and ‘6 - A‘. Al Az .

Let .P be the |>th value of B . MNoting the dependence of As ’

Aé » @y s B, and {1 on p and q ; ptaper subscripts would be used.
Equation (425) then becomes \

- +
36" + 1

A H(l) i8 r}[con 6ap +
6pa m‘ p, ‘

Oupe) 10 82 + 2] 620

Summation of all ;lm given by equation (426) would give the total
‘ L}
)|

‘1(1‘.%!) - (r,9,8) =

%100
p.
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- A J ipr)+
;Z[Spa V;a—z':‘l( P )

ll(l) ip r][cou bagp +
ooy oL

'opa}][“"(’p' * 'on)] (427)

For completeness, the other two {'s will be stated herein.

$2 ° Z.RZL# ['suk N

n=l

beas 100t conl o + w10 + 2]

I Zi[%-c i) *

Comg 1 o] [0 om0 + 0] w1010 + o]

Particular Integral for ‘l'tll

The particular integral of equation (406) must be found. The right-

a8
hsad side s -3; a_oz
4
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From equation (384),

‘2(r,¢.s) - Z; {znk(t‘.%l)

n=]

-2

a=]l

Ronk ®2nk Z2nk (428)

i~

. (1)
vhere  Romk # ['Sak Tou|%4a7) * Yok Yo ‘%"]

°2nlt - e "w + wcmk)

Zonk " '“‘(“n’ + ‘onk)

Taen the right-hand side of equation (406) would be

[ [ ]
é 2 )
Z Z 2 ank 220k Ponk

n=1 k=0

e 12kR
° Z Z - ——?m 2y S0 (640 + ®ou | (625)

n=l k=0

109



= t::% ['Snk Jok(‘“n') * Bonk “g:)(‘“n')]

and

aan N otn(6k¢+ q,onk,

Then the right-hand side of equation (429) becomes
[ _J o«
- Z Z Kook 20k S0k
n=1l k=0

Let

R (right-hand side)

ank Z2nk ®2nk K

Zhen the right-hand side of equation (432) is

ZZ (right-hand lide)nk
n.

To obtain the desired particular integral, each (right-hand ude)“k

(430)

(431)

(432)

(433)

(434)

would be taken as right-hand for equation (406). Particular integrals

for such equations would be found and all such resulting expressions

summed. For example,

.1 ar r Y

4 ar
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£
. Lllnk - (right-hand stde) (435)

2

»
-

where ‘El)nk is the particular integral §. for the specific n,k

combination.

|

Let
LAREEE NOENORENO hae)

Substituting from equation (436) in equation (435) and rearranging

results in

z" (.)

2k (®) 99 Z, @® Rk (™) * ";k(’) + '} Rk (7 *

. (¥) R, (r)
2 0@ ‘nk .2

1 (637)

2nk zan oznk
Equation (437) must be satisfied for any values of r , ® , and s .
Functions separated in this manner on the two sides are to be separately
equal. Equating parts in s and O,

an(l) - zznk - lin‘unn + 'onk' (438)
and

0(® = O, = ’(""“’* "ouu) (439)
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giving

and

¢l“(¢)

- - 2
o (®) (5%)

Then equating the parts in r on both of the sides of equation (430),

R 2 R
2 s () L. R,
Hn .nk + Rnk + r r2 Rnk t2 l2nk (440)

Substituting for ian from equation (430), equation (440) becomes

a - -:—1:3 ['Snk Il 1,7) * By ngi)(mnr )] (441)

fur = n (44°)

Then equation (441) takes the fullowing form.

2
dR dR 2
—ak . 1 ok, [, .2k *1l); .
drz r dr n nk
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= '13' [57 Yok (M) + By "é:)(")] (643)

where
12 k B
. ——obk . .
37 1 12 1k 'Snk (444)
and
12k B
« ———bnk . .
Ba 1 12 1k B6nk (445)
Let
(446)

- (1)
R = R(n) = U(n)J (N + V() H (n)
nk
Vaex? + 1 Y62 + 1

be the particular integral of equation (443).

Then

R'(M = UM J

V62 + 1

(N +u(n J

' (n +
Yiex? + 1

v (n 1) m + v W @)

Vaex? + 1

Take

o)

u'(m) J +V'(n) (n
Vaeu? + 1 Yaex? + 1

=0 (448)
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Then differentiating equation (447),

() = v'(np J' (n +U(n) J (n +

Vaex? + 1 Vasu? + 1

v (m 1) (m + v 11 (W (449)

v36k2 +1 V36k2 +1

Using equations (446) through (449) in equation (443) and rearranging
gives

u(n | 5 (m +1 g (n +
[‘szn " Va4

(1 i m’_u) : O
2
n

(M]+V(n) | K (n +
Vaer? + 1 ] lesk2+1

' 2
L k241

" “36&2 +1 V36

1)’

U'(n J (D +V'(nH (n
Vaeu? + 1 Vaer? + 1

- ;‘5[:, Jeu (™ + 3, H&)(n)] (450)
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Noting that J (n) and "é:)('o are solutions of the following

Vaeu? + 1

Bessel equation,
' 2
yt(n) + Lmn + (1 o &B—l{* )Y e ( (451)
n
results in

J"

m+i 5 (n) +
1, n 1/
36k2 + 1 36&2 + 1

2
(1 . &kz_*l) J e« 0 (452)
v

(n
Y62 + 1

and

RS A— O

Va2 + 1 Vask? + 1

2
(“Jﬁfﬂﬁ” (M) = 0 (453)
n

Vaek? + 1

Using equations (452) and (453) in equation (454),
v(m 3 m+ v
Vaex? + 1 Vaer? + 1
. [’7 Tor (W + By Héllc)(n)] (454)
n
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Solving

for U'(n) and V'(n) from equations (448) and (454),

WO B [,7 3o (M + 3, ‘:’m)]

s - J w3 (n 1
Vexds1 Va6k3+1 Vask2+1 V36k +1
and
(“) ['7 Jou (MW * By "é:) ]
——_ asu 4,
) (1) '
(n N «J (np 1 (r)
V k41 Vaex2+1 Viedsi  Vieki+
because

: 129 IR (1)’ o i
Jo (M B = Io(n) X (n min

Therefore, equations (455) and (456) becoms, respectively,

and

. LR WY S} (1)
V't - 3 2{1 (n [l, Jop (W + Bg Hoy (n)]
" Vaa? +1

: L 1)
v = - -%{J (n)[l Jge(D + 3, B n)}
" Vitay OO
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Integrating the last two expressions with respect to n,

ni
v -3 (37 1, + 8, xz) (460)
and
vV e - % (n, 1,4 B, 1‘) (461)
n(H (M g, ()
Yie? + )
vhere I1 - 2 dn (462)
n
A — u<t) ()
12 - J’.k—"lz dn (463)
n
J () Jgp (M
Yo+
I, - = dn (464)
n

] T m 1
26k uﬂz .

I,. . (465)
Equations (462) through (45S) may be represented in general by the
following:

2 I dn
I = f_x_-g_ (466)
n



vhere

Z and T stand for H(l) or J ]

y stand for V“kz +1

p stand for 6k $

Z_ otand for zy(n)

atand for za(n)

2y 2, ., +2
n 2

Then equation (466) becomes
z. 2 z 2
I » b= I-Y—hlafnf-"—lﬂdn
2 n n
The following integration formula is to be noted:

Z -27 2z 2

2
1l e .I;L!l._!l_.l.l..l_.i
[nzptq‘" n P+ aq

P = q

-2 % . 2 !'H

z . T
- -
[%z'!’ dn » n-=bAcl__y 82

y “8-1 ¥-6-1? Y+ el

118

(467)

(468)

(469)

(470)

(471)



and

flz - ﬂ‘-lrm" LA
ny pHl YZ_('.._“Z y +8+1

Using equations (471) and (472) in equation (469) gives

2 .2, -2 ¢ 2 .2, -2 2
1 +
“[n( Yoo -1 v’-(nH)’)

3  §
From equation (467), substituting for y and § :
f 2
v¥-e-1D2 « |[Val+1] - ok-12% « 12k
r 2
v-@+1)? - \/ukz-rl) -k -1% o -12k

Then the foliowing are easily obtained:

lr.z.'z Z_ Z Z ‘zz

- +=x=i v 8

Y -@-1 vi-@+1)?
z Z . -2 +2 |7 -7
-_';L[_E‘J:LL X J:Z] (474)

12 k
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Using equation (474) in equation (473), then substitutiang for y and
B from equation (467) results in the following equation:

e [ e g A,

-2 ( i!k:l. + zw ) (475)
Vask2er \Vooriar + 6k - 1 V36k+1 + 6k + 1

Equation (475) is equivalent to equation (466) with its integration accom-
piished. By analogy, similar expressions equivalent to equation (462)
through (465) are as follows (in sequeace).

n(t) [J -3 ] + w1 [J -3 ]
6k-1 ~ “6ictL ok ~ Jok-2
I Y it Yaes
L oc @R\ -

12 &
5 (1) [ Jgk-1 @76)
'Jsbkﬂ W/36k+1+6k Vk+1+6k+
(1) (1) (1) (1) 1) | 4(1)
— [1622, - w2, ] + [ L]
IL, " T2k " 12 &

gV u)
(1) [TIJLL 77)
k+1 36k+1+6k-1 Vk+l+6k+
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12 k

{L[ ] g e e

J J
J [ k-1 + Skl (478)
Vask21 LV36k2+1 + 6k - 1 Viek+1 + 6k +
(1) (1) (1), (1)
[ 6k-1 ]’ ‘ ‘/——[ "u-
L u k " 12 k

0 ()
Skl et '} &

J
Vaed+ [\&kzﬂ + 6k -1 V{;uzﬂ + 6k +

The tctal soluction of {1 is
‘1 - ‘l(ro.oa) + tl (480)

Bquation (480) containes gl(r,q,s) » the solution of the homogeneous part
of equation (406) given in equation (427). Using equation (436), the
following is restated:

Sk © Rox(®) 0, (@ 2, (s) (481)

z‘k(l) and 0“(.’ are given in equatione (438) and (439), and restated
herein:

a®) * tpy sl + 1)
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0@ = By = otnfsko+ o |

The most difficult value to establish is R(r) , as shown in the
analysis contained in equations (440) through (479). The subsequent
steps must be followed to obtain R(r) : (1) calculate first the
Bessel expression in equations (476) through (479); (2) introduce the
obtained 11 tc I‘ into equations (460) and (461) having, then,

U and V . IEntering this expression into equation (446), gives the

values for lnk(r) s

R, =R = UnJ (M) + V(n H (n
nk V“kz +1 V“kz +1

Having the values of distortion ;1 ;2 {, , then, the stress distribution
is determined by equations (1) through (5) and equatioan (7) for o .

Thus, the mathematical - physical fundamentals for the internal mechanics
of parallel fibers are established.

Revievw of equations (438) and (439) clearly indicates that the §'s are
of an undulatory nature. But since the solutions are sums over several
eigenvaluss characterised by paramsters n , they could be regarded as

a Fourier series. The coefficients of the series obviously show a certain
characteristic about a value n, - The assumption can therefore be that
the functions § consist primarily of those cosine fuactions whose order
is grouped within a narrow region around this value a, - The conclueion,
then, can be that the functions § will consist, for the most part, of
the functions

i
b
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But since no is a function of 13' and 13' and the material charac-
°
teristics, the wvave length will also depend on those values, besides

showing special depsndence on the fiber diamster.

A photomicrograph of residual stress in Epon 820 resin surrounding a
smaller diamster E-glass single fiber is shown in Figure 4. Magnification

is 100X. PFiber diamster was 0.0004 in. This free fiber was placed in a
drop of resin snd first cured at 250°F for 30 minutes. Examination at
75°F in polarised light following this cure showed no residual stress,
and the fiber was straight. However, after an additional cure of

30 minutes at 350°F, the sample appeared as shown.

Figure 4. Photomicrograph of a Fine Fiber in Resin
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APPENDIX

DERIVATION O NDAMENTAL EQUATIONS

The following is a brief discussion of the basic physical relations
wvhich will be rcoquired in later applications to a fiber reinforced matrix
under various loads. In view of confusion in the literature about what
is ard what is not a tensor or tensor component, this introduction is
considered necessary to define terminology.

e 0 t ti

Consider the transformation from an orthogonal Cartesian coordinste
system to a mere genera! curvilinear system of coordinates. The trans-
fornation is u« one-to-one transformation all of whose derivatives exist:

/<‘;=F"’(u"‘),z_.1,z,3 )

Let -I:_ be a set of orthogonal unit vectors so that the scalar product
gives
I .T =¢ "0 A (2)
A J .LJ’ _ i A'.-i .
= ) J
e'.‘.k is defined by the scslar triple product (Reference 1, pages 16
ani 20)

, X o o]k = e, 3)
fﬂ IJ [ ij k (
so that the vector product is given by

oy 2 -

e ; -

SRR S S gk G gl (%)

€Ly = 0, for any equal subscripts
= 1, for cyclic interchange of subscripts 1, 2, 3

= -], for non-cyclic interchange of subscripts
-
The upper index Ik is used to conform to subaequent tensor notation.
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(a)

(b)

Figure 1
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Consider the vector

- . J - .
R = ("L - X:)IA: ) x* = Cartestan coordinates
vhose differential displacement is
- ! &
d:i & (“z - dx" IA,

repeated indices summed which becomes under the transformation (1)

. ; . J .
Adx* = %—L‘T du” 5 du’ = -:—“: dx+ (5)
(¢JT3 A

ds = dR = d(uj o ded -1? = du‘j T (6)

acLJ A BJ
where
- dnt - > J
o R e . . , - u v
3J du” I.A- ) 14 = A F4 g,) )

Equations (5) and (7) represent the contravariant and covariant trons-
formations respectively. The vectors QJ are the metric vectors tangeut

tangent to the curvilinear coordinate elements du.J 2
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The differential arc length ds is given by the scalar product

a - 4- . - -
ds™ = dR + dR = dx ded I, - 1,

= dx* dxY 3A—J'

= Ju* dyd 3. §;

= du® dyJ 5.; £ Fj = du® du: ‘9. (8)

J J
vhere ‘13 » the metric tensor is defined by
3i; =8, 3;
| 1
e ad am oy o2 di -
R LIRS WY L du* Ou

Although there is no numerical distinction between covariant tensor
and contravariant tensor quantities in Cartesian coordinates, the mainte-
nance of the upper end lower indices is a convenient accounting arrange-
ment. PFor exsmple, if the indices in equation (7) are raised, the

contravariant metric vector system is

, . P - . A" -.o
S S R
ox du’

From these, one may define

‘. qY (10)
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and show by equations (7), (7a), and (10) that

(10a)

By virtue of these cquatiom and other properties of the metric
tensor components 3.. ) 3"".) » these may be utilised for raising and

pd

lowering indices.

» (] J
4 A .
A®= g JA.j 5 Aj :3‘._J-A (11)
Note from equation (9) that the absolute value of
-
’SLl = V9.1i e
and hence
-
30"'_ = - (13)

are unit vectors.

Differentisting equation (9),

’a . a-bl a’
.-i‘-i- - —.EA- s .-9. + 3.. e ———L
3 K K J k
Qu ou p ou
P}
= 6 A W, 2ad T
£ aukau* auJ < au“ 3ukaw’

Interchanging 4, ,J' , k , adding and subtracting, yields
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a ¢ " 29 D‘g,‘._ 29, .
Gpp oy 27 = 4 M
du"Ou* u” u™ ou Ju’

J

= ks, ]

vhich is the Cristoffel symbol of the first kind. The Cristoffel symbol
of the second kind is defined by

{’;J‘} = jﬂ l:k.i.,ﬁ] (150)

(15)

Also,
_1";'_ a __Qilf.. T = __ﬁ—l— -, G
auk dukdur ¢ . Wil Wind 1 Lm
= _?.ﬁ‘_l_. ox7 '§J' G
aukau"' a“J dm
= [ks,;] 3
{c:} 3
= lka SJ' (15b)

The left-hand side of this equation is defined, as rewritten, to be the
covariant derivative:

2!' k| -

L]

In similar manner, thes folloutn.. can be shown:
i Jq* L | -
3, 5 iy &+ .“ 9q k - [0) (16a)
o’ Uk

and from equation (14),
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29, : L L -
Jij,k = -a_a“f '{Lk} 3¢~ {,k} gin =0 B

in similar menner,

"'J D_"i'J. 4 4 J iR
9" = —uk +[1k} 3J +[lk} 9 (172)

s0 that the covariant derivations of the metric vectors snd the metric
tensor are sero.
The determinant of J.Lk from equation (9), becomes :
£ 2
2s4 24t ”_aa.’ a8
A ,
w ou ou”

g = ['3 3*] (19)

g * HﬁLkH =

and by equation (7)

Hence, by equation (3),
i 5 -
5»"'55 X §t= 3rx3$'3t -erst 49 (20)

From these and the fact that Lo S b 1 >
L} 3J J

-l g o~ ‘:
9, %95 = €.,+'9 3 21)
and likewise
- -
Z.r x 3_’5 - LZ.— 9’t (22)
where grst . %?1 and g7 - ©ret Y.;

are tensors.

The area of the triangle determined by two of the three vectors

- J" dwc") (,&,)not summed (23)
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is
ds, = % [d?‘ x J?J-] du* ¢luJ'

»
wé

“]13' du* oluj J.tJ'_t, k I ()

J
= ‘k‘} 3“" AH.J; du‘}

3
/
By egquation (21),
3k = J‘}:
° k k
9
is a unit vector normal to the areal element dSk; hence,
4
AdS = T dS; (25)

« Yg**
vwhere the sum of the vector areas of the faces of the tetrahedron, formed
by the metric vectors J;‘- is equal to the vector area of the fourth

facend S , vhere A is the unit normal to the fourth face dsS .

Setting

hen,g (26)

one obtains

44 ¢ (262)
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Iirst Order Strain

Consider a displacement vector

V e Vo = v gL = €45, 7)
A—

vhere the e" are the physical components of the displacement vector

a&

» since go).. are now unit vectors. are not components of a
tensor and are thus confined to a particular coordinate system. Taking
the differential of equation (27)

= "' - : 3’- d

wvhich by virtue of equation (15b) becomes

- (B + )z

sand by equation (16)
i J
= VJ 3‘.‘ d“ .
- . . ‘.n J
= Vi F+ du
Because V ' is not symmetric, the following may be written:

*J
V: . i = o s W b
V;,' = _.:'.)J—t._vd.’: + v"'J VJ"" (29)
J) 2 2

Dij + %

so that the total displacement becomes

D = V + D 9 du"’ + O 3" O‘ud (30)
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Here, the first and third terms represent a pure displagement and a pure

rotation respectively and the second term L;J 3" Ju" represents the

strain displacement where DA. ° {8 the strain tensor. The rotation

tensor “’i.J' is not considered here, but may appear later where local

couples give rise to nonsero values.

Ihe Stress Tensor

Consider an elemental tetrahedron enclosed by the coordinate
surfaces JSA-' and an srea dS , which s in equilibrium under

forces acting across these faces; i.e.,

a'ds :Z O’;-' C‘S‘U (31)

-

wvhere & is the stress vector. 6' is an invarient, but - 0:', are

not, in the sense that they act across a particular set of coordinate
face elements. PFrom equations (26a) and (31),

-l -l
=2 n. 0. n 32
CAL RTA va_ (32)
By the definition of N » equation (25), these are covariant components

and hence, because of the invariance of 3 . the following may be
written:

62{3(-’-4'. .0"".55). (33)

e f
which are nov contravariant components of a tensor, and O""J is defined
as the contravariant of the stress tensor.

From equations (32) and (33)

- ;’
O =« o ﬂ‘-. 3‘;_ (34)
Also,
. Ja .
?‘G‘SJ (35)
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Figure 2
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so that
- o @ = -l

G = O""Jni=3J-0' (36)

where O'J are the contravariant vector components of the stress normal

to JSJ

The three stress vectors may be written (Reference 1, p. 78)

-G.:'gZJ-_-u- G"'JL— (37)
JiJ

- Z O""J TOJ' (38)
J

]
vhere O'4J define the physical compcnents of the stress tensor, but
refer to a specific coordinate system and are not components of a tensor.

uilibrium Re ions

In Figure 3, the stress vectors acting across the face of the
elements of the paullolopipcd formed by the three vectors 3 d“(")
are, referring to Figure 3,

~ = 5, dSe
-3 dS(.) ; 01 dS(_)+ a( : ()) i (<) oh
A -~ A ti

or

. . 3:1991.; ) %k
_F AT dul At T G+ b(au;l“‘“("“‘“"”“
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If no couples act on this element of volume, then from equation (39),
keeping only first order terms,

-»> - [ =
SLXO:LJS o 0] (40)

or from equations (37) and (22),

e.JkO“"'J j"‘ = 0 (40a)

A
from vhich it follows that
o = oJ* (41)

and the stress tensor is symmetric.

The remaining equilibrium equation states that the sum of the forces
acting on the element of vglume are zero. Thus, {f the masg accelera-
tion of the volume {is -,ofd\/ and the body forces are f dV )
wvhere

dv = [91 X 92 93] du' Juz du’
7 42)

= Vg du? du?du®

then the equilibrium of forces is expressed by

s .b{"k Si“ + pF@'-;’f@' =0 )

% u

or by equation (37)

blc;i.ig + ppjlg‘ 5’4' = PZ /g (44)
w

which can be written
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O’Ldér ) | {9 L: ) & '
_a_____J_ + = _a_ﬁ. cr*)a. PFIdq. = PFJ ' (4ba
qu* g 2u”* 35 T, Jj e

4 o z{r
Gaui Ar

and from equition (15b),

but

aO’Lj J ar r 4 -J.‘___ J
ol fiferr o) e priand o

or

: X A
OSJLJ + PF = PF (46)

* 1
Since %) s a symmetric tensor, the contracted covariant
derivative may be written in the form

i,ow L2 (i)~ L 2, (398) 5 «p
T4 Yg ou* (O-J E) 2 du* D “n

which is much simpler to evaluate for a particular coordinate system.

tress- in lation

The conditions of equilibrium (41) and (45) furnish six relations
for tl -~ determination of the nine stress tensor components. The three
remaining are furnished through the physical equation functionaily
relating the stress and strain tensors. This functional relationship

may be expressed
4 = £ (Dye) (48)

where the functions are expendable in a Tay'or's series. 1If this is
expanded, retaining only first order terms, tihe result is a statement

of Hooke's law.
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i = ALY <
CH = AW+ A PL Dyg
or inversely
Dpg, ~ Cpg, = Cpoij O
?

(49)

(50)

vhere the constant terms CP‘L » A "J may represent initial stress-

strain conditions due to polymeric shrinkage and differential thermal

expansion.

The symmetry properties of a material are independent of coordinate
choice, so that from the evaluation of the Hooke's law elastic tensor a

Cartesian frame of reference may be chosen.

In {sotropic media, such as the reinforcement or the matrix, the

slastic tensor A‘I'JP‘L is invariant under rotation.
: . LY
APL 2 AR AL A AP A

vhere Aj’ is a transformation of pure rotation and hence
G Al AL - P )
v d

(&R A +J

G Ar Q?‘ = 6’--
J
It follows that
A“ikt = pgH gy 4 Gikgy

1
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where )\ y M) 77 are scalar multipliers. In view of the symmetry
of o’ij and D..
+J

ALJ‘kl = ij.kl - A,;J'ik

(54)

which leads to

M=)

and hence
, . . . i ‘i
Ak d L pgrigkt & u (G4kGt + 6it e ) (55)

L'
so that equation (49) becomes, placing /\ J = 0 vhere ).,,u. are
Lamé's constants

oY = [l 5%3“ + M (G‘i’kGJl +6“'lG"kUDk‘Q (56)
In generalisged coordinates,
&4 = [lgijgu + M (3”‘3‘;‘ + g4 SJk)] Deg  on

Placing

. —EV , - B
A (s+v)1-2v) ? M 1+

where E is Young's modulus of elasticity and V is Poisson's ratio.
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The following is obtained (Reference 1, p. 162):

2(1+y) 1-2v

oY —E 3iksjﬁ+3zlgjk+__z_L gbjgkljpkl

i _E (1.' Y i ,z)
z Ty DJ+1-293JD1
or

2 :.—‘—— ., ¥ —?—— , L)
% = Tev (P4 T T2y 94 e

4‘-: -i..( “' + —L “' ")
o ;i *t 7 95 Da

Inverting,

i o A6V ek i
D g T -2 oy

Jempereture Expansion end Materiasl Shrinkage

1

) o

| (59)

(60)

The constant terms in equation (49a) can be utilised to represent
the internal effects of polymerisation shrinkage and thermal expansion.

1f OX represents the linear coefficient of thermal expansion and ﬂ

the polymeric shrinkage, then
L 2 # aT ¢+

= 5:‘; (T +.)
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and

0f - 85 (a7 A e 2 o - g 5]

4+ -4

or inverting

0'3' 21—'—5 D *JL(I-ILV- _‘:Z[a'r.;d)}

1-2v
» (63)
4 = E lpij, 4y Y pl_ _g¢y
o=y 1P+ J(x =2y P4 T 1%y [“T*’s])}
v
L _ ¢
8 nt Vector
Equation (46), for static applied forces, becomes
O“i'.-i + fE cXo) (64)

’J

From equatica (63),

oLj i_gg{‘u ,34-_,( -‘;v -N[ )} (65)

Contracting G"'J to o *)
)k e
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o~ =
K

Equation (64) now becomes

D*J +

)A

r 94id

v QD%_ 1ty o8
=2v 3,4 " 12y E’S:%)} ¥

or lowering indices

t 4
aD{;-‘_’l o 21, .+..b.%.]} +
ou

A a
R
DJ,~ 1=2v ] aud  1-av [ au
4+ . =
pF, =0
vhere Ei = F1 cos P + Fz sinP
Fa = Fyrsm¥ +F, rcos®
Fy = Fg
FA'- - F“' are body forces in Cartesian coordinates
vhereas i are in cylindrical coordinates.
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E Rida T
_-;-{DJ +9 (—_g—; -D_.:i T3y [alsi-; ﬂ#])} (66)
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ndrical Coordina em

b §
- u” cos “2. , 441 = r
N
= uﬁ’ W ez

Then  gij = 0 , i#

9y = 1 %22 = (“‘) ) 333

gup = 1 ) 9aa =%, gpy et
and

gl 0, i#]

I g** - s g% =1

i1

3
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Further, by equation (49)

L
D.LJ = %(31'1 V)J

+ g4 Vf‘-_)

= £ (32 5t )

where by equation (27)

V4 o
9..
Hence:
p“:..ag.{
or
a_ (et .ng)
D’."r'(g +acr
o 2
oz
1 26! 24
o 41282
c>‘3’;= 4 riéfif + & .jiétf:]
2 | o=z r 09
3 g
- 20
D'ﬂ %[%‘*bz]
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Utilizing equations (27) and (47) in equation (68)

2 2 2
-y 2 s! X3 FY Dsl 4
1-2v Jpr r2 oy 2 2 i 2(4 2v) " ord? s+

1 2% _ 12_ 1 2§;
2(1-2V "pdz  2(1-2v) rAd ¢

- L .L(._gl iqt) .L:.L’.(qﬁ+2§)+

1zv r

i S § bz—‘l. + e 4 .231. +
2(1-2v) r 2r9  2(2-2V) r 4)r

4 gy By %, 4 fev 1 [, 27 Q_)
zr(%‘}r;b‘ e N

(9y sin® + ga cos f) 2L =0 0y
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128 .1 %
oz ar Jr

r

i
2(1-2y)

.
2(1-2vy) 2%ez #

i

(75)

=0
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